Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter
Author
Abstract
Suggested Citation
DOI: 10.1038/nature05455
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mingxing Wang & Jin He & Shanshan Li & Qianwen Cai & Kaiming Zhang & Ji She, 2023. "Structural basis of vitamin C recognition and transport by mammalian SVCT1 transporter," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Biao Qiu & Olga Boudker, 2023. "Symport and antiport mechanisms of human glutamate transporters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Takafumi Kato & Tsukasa Kusakizako & Chunhuan Jin & Xinyu Zhou & Ryuichi Ohgaki & LiLi Quan & Minhui Xu & Suguru Okuda & Kan Kobayashi & Keitaro Yamashita & Tomohiro Nishizawa & Yoshikatsu Kanai & Osa, 2022. "Structural insights into inhibitory mechanism of human excitatory amino acid transporter EAAT2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Emanuela Colucci & Zaid R. Anshari & Miyer F. Patiño-Ruiz & Mariia Nemchinova & Jacob Whittaker & Dirk J. Slotboom & Albert Guskov, 2023. "Mutation in glutamate transporter homologue GltTk provides insights into pathologic mechanism of episodic ataxia 6," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Zhenglai Zhang & Huiwen Chen & Ze Geng & Zhuoya Yu & Hang Li & Yanli Dong & Hongwei Zhang & Zhuo Huang & Juquan Jiang & Yan Zhao, 2022. "Structural basis of ligand binding modes of human EAAT2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Anna M. Borowska & Maria Gabriella Chiariello & Alisa A. Garaeva & Jan Rheinberger & Siewert J. Marrink & Cristina Paulino & Dirk J. Slotboom, 2024. "Structural basis of the obligatory exchange mode of human neutral amino acid transporter ASCT2," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Wesley Tien Chiang & Yao-Kai Chang & Wei-Han Hui & Shu-Wei Chang & Chen-Yi Liao & Yi-Chuan Chang & Chun-Jung Chen & Wei-Chen Wang & Chien-Chen Lai & Chun-Hsiung Wang & Siou-Ying Luo & Ya-Ping Huang & , 2024. "Structural basis and synergism of ATP and Na+ activation in bacterial K+ uptake system KtrAB," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- David B. Sauer & Jennifer J. Marden & Joseph C. Sudar & Jinmei Song & Christopher Mulligan & Da-Neng Wang, 2022. "Structural basis of ion – substrate coupling in the Na+-dependent dicarboxylate transporter VcINDY," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:445:y:2007:i:7126:d:10.1038_nature05455. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.