IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v591y2021i7849d10.1038_s41586-021-03240-9.html
   My bibliography  Save this article

Glutamate transporters have a chloride channel with two hydrophobic gates

Author

Listed:
  • Ichia Chen

    (University of Sydney)

  • Shashank Pant

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

  • Qianyi Wu

    (University of Sydney)

  • Rosemary J. Cater

    (University of Sydney
    Columbia University Irving Medical Center)

  • Meghna Sobti

    (The Victor Chang Cardiac Research Institute
    St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney)

  • Robert J. Vandenberg

    (University of Sydney)

  • Alastair G. Stewart

    (The Victor Chang Cardiac Research Institute
    St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney)

  • Emad Tajkhorshid

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

  • Josep Font

    (University of Sydney)

  • Renae M. Ryan

    (University of Sydney)

Abstract

Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and its precise control is vital to maintain normal brain function and to prevent excitotoxicity1. The removal of extracellular glutamate is achieved by plasma-membrane-bound transporters, which couple glutamate transport to sodium, potassium and pH gradients using an elevator mechanism2–5. Glutamate transporters also conduct chloride ions by means of a channel-like process that is thermodynamically uncoupled from transport6–8. However, the molecular mechanisms that enable these dual-function transporters to carry out two seemingly contradictory roles are unknown. Here we report the cryo-electron microscopy structure of a glutamate transporter homologue in an open-channel state, which reveals an aqueous cavity that is formed during the glutamate transport cycle. The functional properties of this cavity, combined with molecular dynamics simulations, reveal it to be an aqueous-accessible chloride permeation pathway that is gated by two hydrophobic regions and is conserved across mammalian and archaeal glutamate transporters. Our findings provide insight into the mechanism by which glutamate transporters support their dual function, and add information that will assist in mapping the complete transport cycle shared by the solute carrier 1A transporter family.

Suggested Citation

  • Ichia Chen & Shashank Pant & Qianyi Wu & Rosemary J. Cater & Meghna Sobti & Robert J. Vandenberg & Alastair G. Stewart & Emad Tajkhorshid & Josep Font & Renae M. Ryan, 2021. "Glutamate transporters have a chloride channel with two hydrophobic gates," Nature, Nature, vol. 591(7849), pages 327-331, March.
  • Handle: RePEc:nat:nature:v:591:y:2021:i:7849:d:10.1038_s41586-021-03240-9
    DOI: 10.1038/s41586-021-03240-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03240-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03240-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenglai Zhang & Huiwen Chen & Ze Geng & Zhuoya Yu & Hang Li & Yanli Dong & Hongwei Zhang & Zhuo Huang & Juquan Jiang & Yan Zhao, 2022. "Structural basis of ligand binding modes of human EAAT2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Reza Dastvan & Ali Rasouli & Sepehr Dehghani-Ghahnaviyeh & Samantha Gies & Emad Tajkhorshid, 2022. "Proton-driven alternating access in a spinster lipid transporter," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Biao Qiu & Olga Boudker, 2023. "Symport and antiport mechanisms of human glutamate transporters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Anna M. Borowska & Maria Gabriella Chiariello & Alisa A. Garaeva & Jan Rheinberger & Siewert J. Marrink & Cristina Paulino & Dirk J. Slotboom, 2024. "Structural basis of the obligatory exchange mode of human neutral amino acid transporter ASCT2," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Takafumi Kato & Tsukasa Kusakizako & Chunhuan Jin & Xinyu Zhou & Ryuichi Ohgaki & LiLi Quan & Minhui Xu & Suguru Okuda & Kan Kobayashi & Keitaro Yamashita & Tomohiro Nishizawa & Yoshikatsu Kanai & Osa, 2022. "Structural insights into inhibitory mechanism of human excitatory amino acid transporter EAAT2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Emanuela Colucci & Zaid R. Anshari & Miyer F. Patiño-Ruiz & Mariia Nemchinova & Jacob Whittaker & Dirk J. Slotboom & Albert Guskov, 2023. "Mutation in glutamate transporter homologue GltTk provides insights into pathologic mechanism of episodic ataxia 6," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:591:y:2021:i:7849:d:10.1038_s41586-021-03240-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.