IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37495-9.html
   My bibliography  Save this article

Anomalous quantized plateaus in two-dimensional electron gas with gate confinement

Author

Listed:
  • Jiaojie Yan

    (Peking University)

  • Yijia Wu

    (Peking University)

  • Shuai Yuan

    (Peking University)

  • Xiao Liu

    (Peking University)

  • L. N. Pfeiffer

    (Princeton University)

  • K. W. West

    (Princeton University)

  • Yang Liu

    (Peking University)

  • Hailong Fu

    (Zhejiang University)

  • X. C. Xie

    (Peking University
    University of Chinese Academy of Sciences)

  • Xi Lin

    (Peking University
    University of Chinese Academy of Sciences
    Peking University)

Abstract

Quantum information can be coded by the topologically protected edges of fractional quantum Hall (FQH) states. Investigation on FQH edges in the hope of searching and utilizing non-Abelian statistics has been a focused challenge for years. Manipulating the edges, e.g. to bring edges close to each other or to separate edges spatially, is a common and essential step for such studies. The FQH edge structures in a confined region are typically presupposed to be the same as that in the open region in analysis of experimental results, but whether they remain unchanged with extra confinement is obscure. In this work, we present a series of unexpected plateaus in a confined single-layer two-dimensional electron gas (2DEG), which are quantized at anomalous fractions such as 9/4, 17/11, 16/13 and the reported 3/2. We explain all the plateaus by assuming surprisingly larger filling factors in the confined region. Our findings enrich the understanding of edge states in the confined region and in the applications of gate manipulation, which is crucial for the experiments with quantum point contact and interferometer.

Suggested Citation

  • Jiaojie Yan & Yijia Wu & Shuai Yuan & Xiao Liu & L. N. Pfeiffer & K. W. West & Yang Liu & Hailong Fu & X. C. Xie & Xi Lin, 2023. "Anomalous quantized plateaus in two-dimensional electron gas with gate confinement," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37495-9
    DOI: 10.1038/s41467-023-37495-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37495-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37495-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. de-Picciotto & M. Reznikov & M. Heiblum & V. Umansky & G. Bunin & D. Mahalu, 1997. "Direct observation of a fractional charge," Nature, Nature, vol. 389(6647), pages 162-164, September.
    2. Aveek Bid & N. Ofek & H. Inoue & M. Heiblum & C. L. Kane & V. Umansky & D. Mahalu, 2010. "Observation of neutral modes in the fractional quantum Hall regime," Nature, Nature, vol. 466(7306), pages 585-590, July.
    3. Mitali Banerjee & Moty Heiblum & Vladimir Umansky & Dima E. Feldman & Yuval Oreg & Ady Stern, 2018. "Observation of half-integer thermal Hall conductance," Nature, Nature, vol. 559(7713), pages 205-210, July.
    4. Mitali Banerjee & Moty Heiblum & Amir Rosenblatt & Yuval Oreg & Dima E. Feldman & Ady Stern & Vladimir Umansky, 2017. "Observed quantization of anyonic heat flow," Nature, Nature, vol. 545(7652), pages 75-79, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. June-Young M. Lee & H.-S. Sim, 2022. "Non-Abelian anyon collider," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    2. Saurabh Kumar Srivastav & Ravi Kumar & Christian Spånslätt & K. Watanabe & T. Taniguchi & Alexander D. Mirlin & Yuval Gefen & Anindya Das, 2022. "Determination of topological edge quantum numbers of fractional quantum Hall phases by thermal conductance measurements," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Jian-Feng Ge & Koen M. Bastiaans & Damianos Chatzopoulos & Doohee Cho & Willem O. Tromp & Tjerk Benschop & Jiasen Niu & Genda Gu & Milan P. Allan, 2023. "Single-electron charge transfer into putative Majorana and trivial modes in individual vortices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Yungi Jeong & Hangyeol Park & Taeho Kim & Kenji Watanabe & Takashi Taniguchi & Jeil Jung & Joonho Jang, 2024. "Interplay of valley, layer and band topology towards interacting quantum phases in moiré bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. M. Petrescu & Z. Berkson-Korenberg & Sujatha Vijayakrishnan & K. W. West & L. N. Pfeiffer & G. Gervais, 2023. "Large composite fermion effective mass at filling factor 5/2," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    6. Haoyun Huang & Waseem Hussain & S. A. Myers & L. N. Pfeiffer & K. W. West & K. W. Baldwin & G. A. Csáthy, 2024. "Evidence for Topological Protection Derived from Six-Flux Composite Fermions," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    7. Rustem Khasanov & Bin-Bin Ruan & Yun-Qing Shi & Gen-Fu Chen & Hubertus Luetkens & Zhi-An Ren & Zurab Guguchia, 2024. "Tuning of the flat band and its impact on superconductivity in Mo5Si3−xPx," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    8. Ron Aharon Melcer & Bivas Dutta & Christian Spånslätt & Jinhong Park & Alexander D. Mirlin & Vladimir Umansky, 2022. "Absent thermal equilibration on fractional quantum Hall edges over macroscopic scale," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Yiwei Chen & Yan Huang & Qingxin Li & Bingbing Tong & Guangli Kuang & Chuanying Xi & Kenji Watanabe & Takashi Taniguchi & Guangtong Liu & Zheng Zhu & Li Lu & Fu-Chun Zhang & Ying-Hai Wu & Lei Wang, 2024. "Tunable even- and odd-denominator fractional quantum Hall states in trilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. J. Nakamura & S. Liang & G. C. Gardner & M. J. Manfra, 2022. "Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37495-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.