IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42986-w.html
   My bibliography  Save this article

Large composite fermion effective mass at filling factor 5/2

Author

Listed:
  • M. Petrescu

    (McGill University)

  • Z. Berkson-Korenberg

    (McGill University)

  • Sujatha Vijayakrishnan

    (McGill University)

  • K. W. West

    (Princeton University)

  • L. N. Pfeiffer

    (Princeton University)

  • G. Gervais

    (McGill University)

Abstract

The 5/2 fractional quantum Hall effect in the second Landau level of extremely clean two-dimensional electron gases has attracted much attention due to its topological order predicted to host quasiparticles that obey non-Abelian quantum statistics and could serve as a basis for fault-tolerant quantum computations. While previous works have establish the Fermi liquid (FL) nature of its putative composite fermion (CF) normal phase, little is known regarding its thermodynamics properties and as a result its effective mass is entirely unknown. Here, we report on time-resolved specific heat measurements at filling factor 5/2, and we examine the ratio of specific heat to temperature as a function of temperature. Combining these specific heat data with existing longitudinal thermopower data measuring the entropy in the clean limit we find that, unless a phase transition/crossover gives rise to large specific heat anomaly, both datasets point towards a large effective mass in the FL phase of CFs at 5/2. We estimate the effective-to-bare mass ratio m*/me to be ranging from ~ 2 to 4, which is two to three times larger than previously measured values in the first Landau level.

Suggested Citation

  • M. Petrescu & Z. Berkson-Korenberg & Sujatha Vijayakrishnan & K. W. West & L. N. Pfeiffer & G. Gervais, 2023. "Large composite fermion effective mass at filling factor 5/2," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42986-w
    DOI: 10.1038/s41467-023-42986-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42986-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42986-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mitali Banerjee & Moty Heiblum & Vladimir Umansky & Dima E. Feldman & Yuval Oreg & Ady Stern, 2018. "Observation of half-integer thermal Hall conductance," Nature, Nature, vol. 559(7713), pages 205-210, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. June-Young M. Lee & H.-S. Sim, 2022. "Non-Abelian anyon collider," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    2. Saurabh Kumar Srivastav & Ravi Kumar & Christian Spånslätt & K. Watanabe & T. Taniguchi & Alexander D. Mirlin & Yuval Gefen & Anindya Das, 2022. "Determination of topological edge quantum numbers of fractional quantum Hall phases by thermal conductance measurements," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Jiaojie Yan & Yijia Wu & Shuai Yuan & Xiao Liu & L. N. Pfeiffer & K. W. West & Yang Liu & Hailong Fu & X. C. Xie & Xi Lin, 2023. "Anomalous quantized plateaus in two-dimensional electron gas with gate confinement," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    4. Yiwei Chen & Yan Huang & Qingxin Li & Bingbing Tong & Guangli Kuang & Chuanying Xi & Kenji Watanabe & Takashi Taniguchi & Guangtong Liu & Zheng Zhu & Li Lu & Fu-Chun Zhang & Ying-Hai Wu & Lei Wang, 2024. "Tunable even- and odd-denominator fractional quantum Hall states in trilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42986-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.