IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v389y1997i6647d10.1038_38241.html
   My bibliography  Save this article

Direct observation of a fractional charge

Author

Listed:
  • R. de-Picciotto

    (Braun Center for Submicron Research, Weizmann Institute of Science)

  • M. Reznikov

    (Braun Center for Submicron Research, Weizmann Institute of Science)

  • M. Heiblum

    (Braun Center for Submicron Research, Weizmann Institute of Science)

  • V. Umansky

    (Braun Center for Submicron Research, Weizmann Institute of Science)

  • G. Bunin

    (Braun Center for Submicron Research, Weizmann Institute of Science)

  • D. Mahalu

    (Braun Center for Submicron Research, Weizmann Institute of Science)

Abstract

Since Millikan's famous oil-drop experiments1, it has been well known that electrical charge is quantized in units of the charge of an electron, e. For this reason, the theoretical prediction2,3 by Laughlin of the existence of fractionally charged ‘quasiparticles’—proposed as an explanation for the fractional quantum Hall (FQH) effect—is very counterintuitive. The FQH effect is a phenomenon observed in the conduction properties of a two-dimensional electron gas subjected to a strong perpendicular magnetic field. This effect results from the strong interaction between electrons, brought about by the magnetic field, giving rise to the aforementioned fractionally charged quasiparticles which carry the current. Here we report the direct observation of these counterintuitive entities by using measurements of quantum shot noise. Quantum shot noise results from the discreteness of the current-carrying charges and so is proportional to both the charge of the quasiparticles and the average current. Our measurements of quantum shot noise show unambiguously that current in a two-dimensional electron gas in the FQH regime is carried by fractional charges—e/3 in the present case—in agreement with Laughlin's prediction.

Suggested Citation

  • R. de-Picciotto & M. Reznikov & M. Heiblum & V. Umansky & G. Bunin & D. Mahalu, 1997. "Direct observation of a fractional charge," Nature, Nature, vol. 389(6647), pages 162-164, September.
  • Handle: RePEc:nat:nature:v:389:y:1997:i:6647:d:10.1038_38241
    DOI: 10.1038/38241
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/38241
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/38241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. June-Young M. Lee & H.-S. Sim, 2022. "Non-Abelian anyon collider," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    2. Rustem Khasanov & Bin-Bin Ruan & Yun-Qing Shi & Gen-Fu Chen & Hubertus Luetkens & Zhi-An Ren & Zurab Guguchia, 2024. "Tuning of the flat band and its impact on superconductivity in Mo5Si3−xPx," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    3. Jian-Feng Ge & Koen M. Bastiaans & Damianos Chatzopoulos & Doohee Cho & Willem O. Tromp & Tjerk Benschop & Jiasen Niu & Genda Gu & Milan P. Allan, 2023. "Single-electron charge transfer into putative Majorana and trivial modes in individual vortices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Jiaojie Yan & Yijia Wu & Shuai Yuan & Xiao Liu & L. N. Pfeiffer & K. W. West & Yang Liu & Hailong Fu & X. C. Xie & Xi Lin, 2023. "Anomalous quantized plateaus in two-dimensional electron gas with gate confinement," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    5. J. Nakamura & S. Liang & G. C. Gardner & M. J. Manfra, 2022. "Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Yungi Jeong & Hangyeol Park & Taeho Kim & Kenji Watanabe & Takashi Taniguchi & Jeil Jung & Joonho Jang, 2024. "Interplay of valley, layer and band topology towards interacting quantum phases in moiré bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Haoyun Huang & Waseem Hussain & S. A. Myers & L. N. Pfeiffer & K. W. West & K. W. Baldwin & G. A. Csáthy, 2024. "Evidence for Topological Protection Derived from Six-Flux Composite Fermions," Nature Communications, Nature, vol. 15(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:389:y:1997:i:6647:d:10.1038_38241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.