IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37451-7.html
   My bibliography  Save this article

In situ constructing atomic interface in ruthenium-based amorphous hybrid-structure towards solar hydrogen evolution

Author

Listed:
  • Dong Liu

    (University of Science and Technology of China)

  • Tao Ding

    (University of Science and Technology of China)

  • Lifeng Wang

    (Chinese Academy of Sciences)

  • Huijuan Zhang

    (University of Science and Technology of China)

  • Li Xu

    (University of Science and Technology of China)

  • Beibei Pang

    (University of Science and Technology of China)

  • Xiaokang Liu

    (University of Science and Technology of China)

  • Huijuan Wang

    (University of Science and Technology of China)

  • Junhui Wang

    (Chinese Academy of Sciences)

  • Kaifeng Wu

    (Chinese Academy of Sciences)

  • Tao Yao

    (University of Science and Technology of China)

Abstract

The rational steering and construction of efficient and stable atomic interfaces is highly desirable but rather challenging in solar energy conversion. Here, we report an in-situ oxygen impregnation strategy to build abundant atomic interfaces composed of homogeneous Ru and RuOx amorphous hybrid-mixture with ultrafast charge transfer, for solar hydrogen evolution with sacrificial agent free. Via in-situ synchrotron X-ray absorption and photoelectron spectroscopies, we can precisely track and identify the gradual formation of atomic interfaces towards homogeneous Ru-RuOx hybrid-structure at the atomic level. Benefiting from the abundant interfaces, the amorphous RuOx sites can intrinsically trap the photoexcited hole within an ultrafast process (

Suggested Citation

  • Dong Liu & Tao Ding & Lifeng Wang & Huijuan Zhang & Li Xu & Beibei Pang & Xiaokang Liu & Huijuan Wang & Junhui Wang & Kaifeng Wu & Tao Yao, 2023. "In situ constructing atomic interface in ruthenium-based amorphous hybrid-structure towards solar hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37451-7
    DOI: 10.1038/s41467-023-37451-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37451-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37451-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christian M. Wolff & Peter D. Frischmann & Marcus Schulze & Bernhard J. Bohn & Robin Wein & Panajotis Livadas & Michael T. Carlson & Frank Jäckel & Jochen Feldmann & Frank Würthner & Jacek K. Stolarcz, 2018. "All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods," Nature Energy, Nature, vol. 3(10), pages 862-869, October.
    2. Maochang Liu & Yubin Chen & Jinzhan Su & Jinwen Shi & Xixi Wang & Liejin Guo, 2016. "Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst," Nature Energy, Nature, vol. 1(11), pages 1-8, November.
    3. Jiawen Fang & Tushar Debnath & Santanu Bhattacharyya & Markus Döblinger & Jochen Feldmann & Jacek K. Stolarczyk, 2020. "Photobase effect for just-in-time delivery in photocatalytic hydrogen generation," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Geng Wu & Xusheng Zheng & Peixin Cui & Hongyu Jiang & Xiaoqian Wang & Yunteng Qu & Wenxing Chen & Yue Lin & Hai Li & Xiao Han & Yanmin Hu & Peigen Liu & Qinghua Zhang & Jingjie Ge & Yancai Yao & Rongb, 2019. "A general synthesis approach for amorphous noble metal nanosheets," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Linlin Cao & Qiquan Luo & Jiajia Chen & Lan Wang & Yue Lin & Huijuan Wang & Xiaokang Liu & Xinyi Shen & Wei Zhang & Wei Liu & Zeming Qi & Zheng Jiang & Jinlong Yang & Tao Yao, 2019. "Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    6. Arno Bergmann & Elias Martinez-Moreno & Detre Teschner & Petko Chernev & Manuel Gliech & Jorge Ferreira de Araújo & Tobias Reier & Holger Dau & Peter Strasser, 2015. "Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    7. Juan Wang & Lili Han & Bolong Huang & Qi Shao & Huolin L. Xin & Xiaoqing Huang, 2019. "Amorphization activated ruthenium-tellurium nanorods for efficient water splitting," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    8. Bingzhang Lu & Lin Guo & Feng Wu & Yi Peng & Jia En Lu & Tyler J. Smart & Nan Wang & Y. Zou Finfrock & David Morris & Peng Zhang & Ning Li & Peng Gao & Yuan Ping & Shaowei Chen, 2019. "Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    9. Gang Zhou & Yun Shan & Youyou Hu & Xiaoyong Xu & Liyuan Long & Jinlei Zhang & Jun Dai & Junhong Guo & Jiancang Shen & Shuang Li & Lizhe Liu & Xinglong Wu, 2018. "Half-metallic carbon nitride nanosheets with micro grid mode resonance structure for efficient photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    10. Momirlan, M. & Veziroglu, T. N., 2002. "Current status of hydrogen energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 141-179.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Liejin & Chen, Yubin & Su, Jinzhan & Liu, Maochang & Liu, Ya, 2019. "Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow," Energy, Elsevier, vol. 172(C), pages 1079-1086.
    2. Yan Guo & Qixin Zhou & Jun Nan & Wenxin Shi & Fuyi Cui & Yongfa Zhu, 2022. "Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    4. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
    5. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    6. Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
    7. Julius Akinbomi & Mohammad J. Taherzadeh, 2015. "Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes," Energies, MDPI, vol. 8(5), pages 1-20, May.
    8. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    9. Felix T. Haase & Arno Bergmann & Travis E. Jones & Janis Timoshenko & Antonia Herzog & Hyo Sang Jeon & Clara Rettenmaier & Beatriz Roldan Cuenya, 2022. "Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction," Nature Energy, Nature, vol. 7(8), pages 765-773, August.
    10. Li Zhai & Sara T. Gebre & Bo Chen & Dan Xu & Junze Chen & Zijian Li & Yawei Liu & Hua Yang & Chongyi Ling & Yiyao Ge & Wei Zhai & Changsheng Chen & Lu Ma & Qinghua Zhang & Xuefei Li & Yujie Yan & Xiny, 2023. "Epitaxial growth of highly symmetrical branched noble metal-semiconductor heterostructures with efficient plasmon-induced hot-electron transfer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Kun Du & Lifu Zhang & Jieqiong Shan & Jiaxin Guo & Jing Mao & Chueh-Cheng Yang & Chia-Hsin Wang & Zhenpeng Hu & Tao Ling, 2022. "Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Guokang Han & Xue Zhang & Wei Liu & Qinghua Zhang & Zhiqiang Wang & Jun Cheng & Tao Yao & Lin Gu & Chunyu Du & Yunzhi Gao & Geping Yin, 2021. "Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Qitao Chen & Baodong Mao & Yanhong Liu & Yunjie Zhou & Hui Huang & Song Wang & Longhua Li & Wei-Cheng Yan & Weidong Shi & Zhenhui Kang, 2024. "Designing 2D carbon dot nanoreactors for alcohol oxidation coupled with hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Ma, Ben-Chi & Lin, Hua & Zhu, Yizhou & Zeng, Zilong & Geng, Jiafeng & Jing, Dengwei, 2022. "A new Concentrated Photovoltaic Thermal-Hydrogen system with photocatalyst suspension as optical liquid filter," Renewable Energy, Elsevier, vol. 194(C), pages 1221-1232.
    15. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    16. Huanyu Jin & Xinyan Liu & Pengfei An & Cheng Tang & Huimin Yu & Qinghua Zhang & Hong-Jie Peng & Lin Gu & Yao Zheng & Taeseup Song & Kenneth Davey & Ungyu Paik & Juncai Dong & Shi-Zhang Qiao, 2023. "Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Shangheng Liu & Shize Geng & Ling Li & Ying Zhang & Guomian Ren & Bolong Huang & Zhiwei Hu & Jyh-Fu Lee & Yu-Hong Lai & Ying-Hao Chu & Yong Xu & Qi Shao & Xiaoqing Huang, 2022. "A top-down strategy for amorphization of hydroxyl compounds for electrocatalytic oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Jie Wei & Hua Tang & Li Sheng & Ruyang Wang & Minghui Fan & Jiale Wan & Yuheng Wu & Zhirong Zhang & Shiming Zhou & Jie Zeng, 2024. "Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Koroneos, C. & Dompros, A. & Roumbas, G. & Moussiopoulos, N., 2005. "Advantages of the use of hydrogen fuel as compared to kerosene," Resources, Conservation & Recycling, Elsevier, vol. 44(2), pages 99-113.
    20. Xinyu Ping & Yongduo Liu & Lixia Zheng & Yang Song & Lin Guo & Siguo Chen & Zidong Wei, 2024. "Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37451-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.