IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37357-4.html
   My bibliography  Save this article

Tackling antibiotic resistance by inducing transient and robust collateral sensitivity

Author

Listed:
  • Sara Hernando-Amado

    (Centro Nacional de Biotecnología, CSIC)

  • Pablo Laborda

    (Centro Nacional de Biotecnología, CSIC
    Technical University of Denmark
    Rigshospitalet)

  • José Luis Martínez

    (Centro Nacional de Biotecnología, CSIC)

Abstract

Collateral sensitivity (CS) is an evolutionary trade-off traditionally linked to the mutational acquisition of antibiotic resistance (AR). However, AR can be temporally induced, and the possibility that this causes transient, non-inherited CS, has not been addressed. Mutational acquisition of ciprofloxacin resistance leads to robust CS to tobramycin in pre-existing antibiotic-resistant mutants of Pseudomonas aeruginosa. Further, the strength of this phenotype is higher when nfxB mutants, over-producing the efflux pump MexCD-OprJ, are selected. Here, we induce transient nfxB-mediated ciprofloxacin resistance by using the antiseptic dequalinium chloride. Notably, non-inherited induction of AR renders transient tobramycin CS in the analyzed antibiotic-resistant mutants and clinical isolates, including tobramycin-resistant isolates. Further, by combining tobramycin with dequalinium chloride we drive these strains to extinction. Our results support that transient CS could allow the design of new evolutionary strategies to tackle antibiotic-resistant infections, avoiding the acquisition of AR mutations on which inherited CS depends.

Suggested Citation

  • Sara Hernando-Amado & Pablo Laborda & José Luis Martínez, 2023. "Tackling antibiotic resistance by inducing transient and robust collateral sensitivity," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37357-4
    DOI: 10.1038/s41467-023-37357-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37357-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37357-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Nichol & Joseph Rutter & Christopher Bryant & Andrea M. Hujer & Sai Lek & Mark D. Adams & Peter Jeavons & Alexander R. A. Anderson & Robert A. Bonomo & Jacob G. Scott, 2019. "Antibiotic collateral sensitivity is contingent on the repeatability of evolution," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Viktória Lázár & István Nagy & Réka Spohn & Bálint Csörgő & Ádám Györkei & Ákos Nyerges & Balázs Horváth & Andrea Vörös & Róbert Busa-Fekete & Mónika Hrtyan & Balázs Bogos & Orsolya Méhi & Gergely Fek, 2014. "Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network," Nature Communications, Nature, vol. 5(1), pages 1-12, September.
    3. Nicole L. Podnecky & Elizabeth G. A. Fredheim & Julia Kloos & Vidar Sørum & Raul Primicerio & Adam P. Roberts & Daniel E. Rozen & Ørjan Samuelsen & Pål J. Johnsen, 2018. "Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia coli," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalie J. E. Waller & Chen-Yi Cheung & Gregory M. Cook & Matthew B. McNeil, 2023. "The evolution of antibiotic resistance is associated with collateral drug phenotypes in Mycobacterium tuberculosis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Jeff Maltas & Kevin B Wood, 2019. "Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-34, October.
    3. Shraddha Karve & Andreas Wagner, 2022. "Environmental complexity is more important than mutation in driving the evolution of latent novel traits in E. coli," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Qian Li & Shang Chen & Kui Zhu & Xiaoluo Huang & Yucheng Huang & Zhangqi Shen & Shuangyang Ding & Danxia Gu & Qiwen Yang & Hongli Sun & Fupin Hu & Hui Wang & Jiachang Cai & Bing Ma & Rong Zhang & Jian, 2022. "Collateral sensitivity to pleuromutilins in vancomycin-resistant Enterococcus faecium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Cheng Zhao & Yu Wang & Ranya Mulchandani & Thomas P. Van Boeckel, 2024. "Global surveillance of antimicrobial resistance in food animals using priority drugs maps," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Dennis Y. Liu & Laura Phillips & Darryl M. Wilson & Kelly M. Fulton & Susan M. Twine & Alex Wong & Roger G. Linington, 2023. "Collateral sensitivity profiling in drug-resistant Escherichia coli identifies natural products suppressing cephalosporin resistance," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37357-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.