Fossil steroids record the appearance of Demospongiae during the Cryogenian period
Author
Abstract
Suggested Citation
DOI: 10.1038/nature07673
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Malcolm S Hill & April L Hill & Jose Lopez & Kevin J Peterson & Shirley Pomponi & Maria C Diaz & Robert W Thacker & Maja Adamska & Nicole Boury-Esnault & Paco Cárdenas & Andia Chaves-Fonnegra & Elizab, 2013. "Reconstruction of Family-Level Phylogenetic Relationships within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-16, January.
- T. Brunoir & C. Mulligan & A. Sistiaga & K. M. Vuu & P. M. Shih & S. S. O’Reilly & R. E. Summons & D. A. Gold, 2023. "Common origin of sterol biosynthesis points to a feeding strategy shift in Neoproterozoic animals," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Malory O. Brown & Babatunde O. Olagunju & José-Luis Giner & Paula V. Welander, 2023. "Sterol methyltransferases in uncultured bacteria complicate eukaryotic biomarker interpretations," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Jikun Liu & Litao Wang & Fei Chen & Wenya Hu & Chenglong Dong & Yinghao Wang & Yehua Han, 2023. "Molecular Characterization of Hydrocarbons in Petroleum by Ultrahigh-Resolution Mass Spectrometry," Energies, MDPI, vol. 16(11), pages 1-16, May.
- Lennart Ramme & Tatiana Ilyina & Jochem Marotzke, 2024. "Moderate greenhouse climate and rapid carbonate formation after Marinoan snowball Earth," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Huyue Song & Zhihui An & Qin Ye & Eva E. Stüeken & Jing Li & Jun Hu & Thomas J. Algeo & Li Tian & Daoliang Chu & Haijun Song & Shuhai Xiao & Jinnan Tong, 2023. "Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Katsuhiko Shimizu & Michika Nishi & Yuto Sakate & Haruka Kawanami & Tomohiro Bito & Jiro Arima & Laia Leria & Manuel Maldonado, 2024. "Silica-associated proteins from hexactinellid sponges support an alternative evolutionary scenario for biomineralization in Porifera," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Kang, Shijie & Zhang, Shijing & Wang, Zhendong & Li, Shengli & Zhao, Fangci & Yang, Jie & Zhou, Lingbo & Deng, Yang & Sun, Guidong & Yu, Hongdong, 2023. "Highly efficient catalytic pyrolysis of oil shale by CaCl2 in subcritical water," Energy, Elsevier, vol. 274(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:457:y:2009:i:7230:d:10.1038_nature07673. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.