IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36932-z.html
   My bibliography  Save this article

Multiplexed analysis of EV reveals specific biomarker composition with diagnostic impact

Author

Listed:
  • Joshua D. Spitzberg

    (Massachusetts General Hospital)

  • Scott Ferguson

    (Massachusetts General Hospital)

  • Katherine S. Yang

    (Massachusetts General Hospital)

  • Hannah M. Peterson

    (Massachusetts General Hospital)

  • Jonathan C. T. Carlson

    (Massachusetts General Hospital
    Cancer Center, Massachusetts General Hospital)

  • Ralph Weissleder

    (Massachusetts General Hospital
    Cancer Center, Massachusetts General Hospital
    Harvard Medical School)

Abstract

Exosomes and extracellular vesicles (EV) are increasingly being explored as circulating biomarkers, but their heterogenous composition will likely mandate the development of multiplexed EV technologies. Iteratively multiplexed analyses of near single EVs have been challenging to implement beyond a few colors during spectral sensing. Here we developed a multiplexed analysis of EV technique (MASEV) to interrogate thousands of individual EVs during 5 cycles of multi-channel fluorescence staining for 15 EV biomarkers. Contrary to the common belief, we show that: several markers proposed to be ubiquitous are less prevalent than believed; multiple biomarkers concur in single vesicles but only in small fractions; affinity purification can lead to loss of rare EV subtypes; and deep profiling allows detailed analysis of EV, potentially improving the diagnostic content. These findings establish the potential of MASEV for uncovering fundamental EV biology and heterogeneity and increasing diagnostic specificity.

Suggested Citation

  • Joshua D. Spitzberg & Scott Ferguson & Katherine S. Yang & Hannah M. Peterson & Jonathan C. T. Carlson & Ralph Weissleder, 2023. "Multiplexed analysis of EV reveals specific biomarker composition with diagnostic impact," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36932-z
    DOI: 10.1038/s41467-023-36932-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36932-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36932-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fredrik Edfors & Andreas Hober & Klas Linderbäck & Gianluca Maddalo & Alireza Azimi & Åsa Sivertsson & Hanna Tegel & Sophia Hober & Cristina Al-Khalili Szigyarto & Linn Fagerberg & Kalle Feilitzen & P, 2018. "Enhanced validation of antibodies for research applications," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Monya Baker, 2020. "When antibodies mislead: the quest for validation," Nature, Nature, vol. 585(7824), pages 313-314, September.
    3. Sonia A. Melo & Linda B. Luecke & Christoph Kahlert & Agustin F. Fernandez & Seth T. Gammon & Judith Kaye & Valerie S. LeBleu & Elizabeth A. Mittendorf & Juergen Weitz & Nuh Rahbari & Christoph Reissf, 2015. "Glypican-1 identifies cancer exosomes and detects early pancreatic cancer," Nature, Nature, vol. 523(7559), pages 177-182, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexia Stollmann & Jose Garcia-Guirado & Jae-Sang Hong & Pascal Rüedi & Hyungsoon Im & Hakho Lee & Jaime Ortega Arroyo & Romain Quidant, 2024. "Molecular fingerprinting of biological nanoparticles with a label-free optofluidic platform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghazala Malik & Fatima Sultan & Ahmed Bin Amir, 2019. "Pancreatic Cancer: Early Detection and Surveillance," Cancer Therapy & Oncology International Journal, Juniper Publishers Inc., vol. 13(1), pages 46-49, January.
    2. Nan Li & Alex Quan & Dan Li & Jiajia Pan & Hua Ren & Gerard Hoeltzel & Natalia Val & Dana Ashworth & Weiming Ni & Jing Zhou & Sean Mackay & Stephen M. Hewitt & Raul Cachau & Mitchell Ho, 2023. "The IgG4 hinge with CD28 transmembrane domain improves VHH-based CAR T cells targeting a membrane-distal epitope of GPC1 in pancreatic cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Fei Wang & Peiwen Ding & Xue Liang & Xiangning Ding & Camilla Blunk Brandt & Evelina Sjöstedt & Jiacheng Zhu & Saga Bolund & Lijing Zhang & Laura P. M. H. Rooij & Lihua Luo & Yanan Wei & Wandong Zhao , 2022. "Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Shideh Mirhadi & Shirley Tam & Quan Li & Nadeem Moghal & Nhu-An Pham & Jiefei Tong & Brian J. Golbourn & Jonathan R. Krieger & Paul Taylor & Ming Li & Jessica Weiss & Sebastiao N. Martins-Filho & Vibh, 2022. "Integrative analysis of non-small cell lung cancer patient-derived xenografts identifies distinct proteotypes associated with patient outcomes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Zhichao Yang & Avijit Mitra & Weisong Liu & Dan Berlowitz & Hong Yu, 2023. "TransformEHR: transformer-based encoder-decoder generative model to enhance prediction of disease outcomes using electronic health records," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Manju Padmasekar & Rajkumar Savai & Werner Seeger & Soni Savai Pullamsetti, 2021. "Exposomes to Exosomes: Exosomes as Tools to Study Epigenetic Adaptive Mechanisms in High-Altitude Humans," IJERPH, MDPI, vol. 18(16), pages 1-20, August.
    7. Sean L Nguyen & Jacob W Greenberg & Hao Wang & Benjamin W Collaer & Jianrong Wang & Margaret G Petroff, 2019. "Quantifying murine placental extracellular vesicles across gestation and in preterm birth data with tidyNano: A computational framework for analyzing and visualizing nanoparticle data in R," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-14, June.
    8. Shiyan Dong & Xuan Liu & Ye Bi & Yifan Wang & Abin Antony & DaeYong Lee & Kristin Huntoon & Seongdong Jeong & Yifan Ma & Xuefeng Li & Weiye Deng & Benjamin R. Schrank & Adam J. Grippin & JongHoon Ha &, 2023. "Adaptive design of mRNA-loaded extracellular vesicles for targeted immunotherapy of cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36932-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.