IDEAS home Printed from https://ideas.repec.org/a/adp/jctoij/v13y2019i1p46-49.html
   My bibliography  Save this article

Pancreatic Cancer: Early Detection and Surveillance

Author

Listed:
  • Ghazala Malik

    (Consultant Radiologist Milton Keynes University Hospital United Kingdom)

  • Fatima Sultan

    (Shalamar Institute of Health Sciences Pakistan)

  • Ahmed Bin Amir

    (Lahore Medical and Dental College Pakistan)

Abstract

Pancreatic cancer (PC) is characterized by extremely high mortality and poor prognosis. Unfortunately, compared with other malignancies, there has been little improvement in the survival rate of patients with PC in recent decades. In almost all cases, pancreatic cancer is detected in the non-resectable advanced stages because the disease is usually asymptomatic in the early stages.

Suggested Citation

  • Ghazala Malik & Fatima Sultan & Ahmed Bin Amir, 2019. "Pancreatic Cancer: Early Detection and Surveillance," Cancer Therapy & Oncology International Journal, Juniper Publishers Inc., vol. 13(1), pages 46-49, January.
  • Handle: RePEc:adp:jctoij:v:13:y:2019:i:1:p:46-49
    DOI: 10.19080/CTOIJ.2019.13.555853
    as

    Download full text from publisher

    File URL: https://juniperpublishers.com/ctoij/pdf/CTOIJ.MS.ID.555853.pdf
    Download Restriction: no

    File URL: https://juniperpublishers.com/ctoij/CTOIJ.MS.ID.555853.php
    Download Restriction: no

    File URL: https://libkey.io/10.19080/CTOIJ.2019.13.555853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sonia A. Melo & Linda B. Luecke & Christoph Kahlert & Agustin F. Fernandez & Seth T. Gammon & Judith Kaye & Valerie S. LeBleu & Elizabeth A. Mittendorf & Juergen Weitz & Nuh Rahbari & Christoph Reissf, 2015. "Glypican-1 identifies cancer exosomes and detects early pancreatic cancer," Nature, Nature, vol. 523(7559), pages 177-182, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua D. Spitzberg & Scott Ferguson & Katherine S. Yang & Hannah M. Peterson & Jonathan C. T. Carlson & Ralph Weissleder, 2023. "Multiplexed analysis of EV reveals specific biomarker composition with diagnostic impact," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Nan Li & Alex Quan & Dan Li & Jiajia Pan & Hua Ren & Gerard Hoeltzel & Natalia Val & Dana Ashworth & Weiming Ni & Jing Zhou & Sean Mackay & Stephen M. Hewitt & Raul Cachau & Mitchell Ho, 2023. "The IgG4 hinge with CD28 transmembrane domain improves VHH-based CAR T cells targeting a membrane-distal epitope of GPC1 in pancreatic cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Zhichao Yang & Avijit Mitra & Weisong Liu & Dan Berlowitz & Hong Yu, 2023. "TransformEHR: transformer-based encoder-decoder generative model to enhance prediction of disease outcomes using electronic health records," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Manju Padmasekar & Rajkumar Savai & Werner Seeger & Soni Savai Pullamsetti, 2021. "Exposomes to Exosomes: Exosomes as Tools to Study Epigenetic Adaptive Mechanisms in High-Altitude Humans," IJERPH, MDPI, vol. 18(16), pages 1-20, August.
    5. Sean L Nguyen & Jacob W Greenberg & Hao Wang & Benjamin W Collaer & Jianrong Wang & Margaret G Petroff, 2019. "Quantifying murine placental extracellular vesicles across gestation and in preterm birth data with tidyNano: A computational framework for analyzing and visualizing nanoparticle data in R," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-14, June.
    6. Shiyan Dong & Xuan Liu & Ye Bi & Yifan Wang & Abin Antony & DaeYong Lee & Kristin Huntoon & Seongdong Jeong & Yifan Ma & Xuefeng Li & Weiye Deng & Benjamin R. Schrank & Adam J. Grippin & JongHoon Ha &, 2023. "Adaptive design of mRNA-loaded extracellular vesicles for targeted immunotherapy of cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adp:jctoij:v:13:y:2019:i:1:p:46-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Thomas (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.