IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36797-2.html
   My bibliography  Save this article

Structural details of a Class B GPCR-arrestin complex revealed by genetically encoded crosslinkers in living cells

Author

Listed:
  • Yasmin Aydin

    (Leipzig University)

  • Thore Böttke

    (Leipzig University)

  • Jordy Homing Lam

    (University of Southern California)

  • Stefan Ernicke

    (Leipzig University)

  • Anna Fortmann

    (Leipzig University)

  • Maik Tretbar

    (Leipzig University)

  • Barbara Zarzycka

    (Vrije Universiteit Amsterdam)

  • Vsevolod V. Gurevich

    (Vanderbilt University)

  • Vsevolod Katritch

    (University of Southern California
    University of Southern California)

  • Irene Coin

    (Leipzig University)

Abstract

Understanding the molecular basis of arrestin-mediated regulation of GPCRs is critical for deciphering signaling mechanisms and designing functional selectivity. However, structural studies of GPCR-arrestin complexes are hampered by their highly dynamic nature. Here, we dissect the interaction of arrestin-2 (arr2) with the secretin-like parathyroid hormone 1 receptor PTH1R using genetically encoded crosslinking amino acids in live cells. We identify 136 intermolecular proximity points that guide the construction of energy-optimized molecular models for the PTH1R-arr2 complex. Our data reveal flexible receptor elements missing in existing structures, including intracellular loop 3 and the proximal C-tail, and suggest a functional role of a hitherto overlooked positively charged region at the arrestin N-edge. Unbiased MD simulations highlight the stability and dynamic nature of the complex. Our integrative approach yields structural insights into protein-protein complexes in a biologically relevant live-cell environment and provides information inaccessible to classical structural methods, while also revealing the dynamics of the system.

Suggested Citation

  • Yasmin Aydin & Thore Böttke & Jordy Homing Lam & Stefan Ernicke & Anna Fortmann & Maik Tretbar & Barbara Zarzycka & Vsevolod V. Gurevich & Vsevolod Katritch & Irene Coin, 2023. "Structural details of a Class B GPCR-arrestin complex revealed by genetically encoded crosslinkers in living cells," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36797-2
    DOI: 10.1038/s41467-023-36797-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36797-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36797-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arun K. Shukla & Aashish Manglik & Andrew C. Kruse & Kunhong Xiao & Rosana I. Reis & Wei-Chou Tseng & Dean P. Staus & Daniel Hilger & Serdar Uysal & Li-Yin Huang & Marcin Paduch & Prachi Tripathi-Shuk, 2013. "Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide," Nature, Nature, vol. 497(7447), pages 137-141, May.
    2. Yanyong Kang & X. Edward Zhou & Xiang Gao & Yuanzheng He & Wei Liu & Andrii Ishchenko & Anton Barty & Thomas A. White & Oleksandr Yefanov & Gye Won Han & Qingping Xu & Parker W. de Waal & Jiyuan Ke & , 2015. "Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser," Nature, Nature, vol. 523(7562), pages 561-567, July.
    3. Dean P. Staus & Hongli Hu & Michael J. Robertson & Alissa L. W. Kleinhenz & Laura M. Wingler & William D. Capel & Naomi R. Latorraca & Robert J. Lefkowitz & Georgios Skiniotis, 2020. "Structure of the M2 muscarinic receptor–β-arrestin complex in a lipid nanodisc," Nature, Nature, vol. 579(7798), pages 297-302, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yutaro Shiraishi & Yutaka Kofuku & Takumi Ueda & Shubhi Pandey & Hemlata Dwivedi-Agnihotri & Arun K. Shukla & Ichio Shimada, 2021. "Biphasic activation of β-arrestin 1 upon interaction with a GPCR revealed by methyl-TROSY NMR," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Raphael S. Haider & Edda S. F. Matthees & Julia Drube & Mona Reichel & Ulrike Zabel & Asuka Inoue & Andy Chevigné & Cornelius Krasel & Xavier Deupi & Carsten Hoffmann, 2022. "β-arrestin1 and 2 exhibit distinct phosphorylation-dependent conformations when coupling to the same GPCR in living cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Ruibo Zhai & Zhuoqi Wang & Zhaofei Chai & Xiaogang Niu & Conggang Li & Changwen Jin & Yunfei Hu, 2023. "Distinct activation mechanisms of β-arrestin-1 revealed by 19F NMR spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Junke Liu & Hengmin Tang & Chanjuan Xu & Shengnan Zhou & Xunying Zhu & Yuanyuan Li & Laurent Prézeau & Tao Xu & Jean-Philippe Pin & Philippe Rondard & Wei Ji & Jianfeng Liu, 2022. "Biased signaling due to oligomerization of the G protein-coupled platelet-activating factor receptor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Amal El Daibani & Joseph M. Paggi & Kuglae Kim & Yianni D. Laloudakis & Petr Popov & Sarah M. Bernhard & Brian E. Krumm & Reid H. J. Olsen & Jeffrey Diberto & F. Ivy Carroll & Vsevolod Katritch & Bern, 2023. "Molecular mechanism of biased signaling at the kappa opioid receptor," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Hongyu Liu & Ran Duan & Xiaoyu He & Jincu Qi & Tianming Xing & Yahan Wu & Liping Zhou & Lingling Wang & Yujing Shao & Fulei Zhang & Huixing Zhou & Xingdong Gu & Bowen Lin & Yuanyuan Liu & Yan Wang & Y, 2023. "Endothelial deletion of PTBP1 disrupts ventricular chamber development," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Pankaj Sharma & Elena Maklashina & Markus Voehler & Sona Balintova & Sarka Dvorakova & Michal Kraus & Katerina Hadrava Vanova & Zuzana Nahacka & Renata Zobalova & Stepana Boukalova & Kristyna Cunatova, 2024. "Disordered-to-ordered transitions in assembly factors allow the complex II catalytic subunit to switch binding partners," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Fenghui Zhao & Qingtong Zhou & Zhaotong Cong & Kaini Hang & Xinyu Zou & Chao Zhang & Yan Chen & Antao Dai & Anyi Liang & Qianqian Ming & Mu Wang & Li-Nan Chen & Peiyu Xu & Rulve Chang & Wenbo Feng & T, 2022. "Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Kevin M. Dalton & Jack B. Greisman & Doeke R. Hekstra, 2022. "A unifying Bayesian framework for merging X-ray diffraction data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Jun Xu & Qinggong Wang & Harald Hübner & Yunfei Hu & Xiaogang Niu & Haoqing Wang & Shoji Maeda & Asuka Inoue & Yuyong Tao & Peter Gmeiner & Yang Du & Changwen Jin & Brian K. Kobilka, 2023. "Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36797-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.