IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36496-y.html
   My bibliography  Save this article

Cell surface protein aggregation triggers endocytosis to maintain plasma membrane proteostasis

Author

Listed:
  • David Paul

    (Francis Crick Avenue)

  • Omer Stern

    (Francis Crick Avenue)

  • Yvonne Vallis

    (Francis Crick Avenue)

  • Jatinder Dhillon

    (Antibody Discovery & Protein Engineering, Granta Park)

  • Andrew Buchanan

    (Antibody Discovery & Protein Engineering, Granta Park)

  • Harvey McMahon

    (Francis Crick Avenue)

Abstract

The ability of cells to manage consequences of exogenous proteotoxicity is key to cellular homeostasis. While a plethora of well-characterised machinery aids intracellular proteostasis, mechanisms involved in the response to denaturation of extracellular proteins remain elusive. Here we show that aggregation of protein ectodomains triggers their endocytosis via a macroendocytic route, and subsequent lysosomal degradation. Using ERBB2/HER2-specific antibodies we reveal that their cross-linking ability triggers specific and fast endocytosis of the receptor, independent of clathrin and dynamin. Upon aggregation, canonical clathrin-dependent cargoes are redirected into the aggregation-dependent endocytosis (ADE) pathway. ADE is an actin-driven process, which morphologically resembles macropinocytosis. Physical and chemical stress-induced aggregation of surface proteins also triggers ADE, facilitating their degradation in the lysosome. This study pinpoints aggregation of extracellular domains as a trigger for rapid uptake and lysosomal clearance which besides its proteostatic function has potential implications for the uptake of pathological protein aggregates and antibody-based therapies.

Suggested Citation

  • David Paul & Omer Stern & Yvonne Vallis & Jatinder Dhillon & Andrew Buchanan & Harvey McMahon, 2023. "Cell surface protein aggregation triggers endocytosis to maintain plasma membrane proteostasis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36496-y
    DOI: 10.1038/s41467-023-36496-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36496-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36496-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bruno Marks & Michael H. B. Stowell & Yvonne Vallis & Ian G. Mills & Adele Gibson & Colin R. Hopkins & Harvey T. McMahon, 2001. "GTPase activity of dynamin and resulting conformation change are essential for endocytosis," Nature, Nature, vol. 410(6825), pages 231-235, March.
    2. Cosimo Commisso & Shawn M. Davidson & Rengin G. Soydaner-Azeloglu & Seth J. Parker & Jurre J. Kamphorst & Sean Hackett & Elda Grabocka & Michel Nofal & Jeffrey A. Drebin & Craig B. Thompson & Joshua D, 2013. "Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells," Nature, Nature, vol. 497(7451), pages 633-637, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anmin Jiang & Kye Kudo & Rachel S. Gormal & Sevannah Ellis & Sikao Guo & Tristan P. Wallis & Shanley F. Longfield & Phillip J. Robinson & Margaret E. Johnson & Merja Joensuu & Frédéric A. Meunier, 2024. "Dynamin1 long- and short-tail isoforms exploit distinct recruitment and spatial patterns to form endocytic nanoclusters," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Ella N. Hoogenboezem & Shrusti S. Patel & Justin H. Lo & Ashley B. Cavnar & Lauren M. Babb & Nora Francini & Eva F. Gbur & Prarthana Patil & Juan M. Colazo & Danielle L. Michell & Violeta M. Sanchez &, 2024. "Structural optimization of siRNA conjugates for albumin binding achieves effective MCL1-directed cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Edoardo Ratto & S. Roy Chowdhury & Nora S. Siefert & Martin Schneider & Marten Wittmann & Dominic Helm & Wilhelm Palm, 2022. "Direct control of lysosomal catabolic activity by mTORC1 through regulation of V-ATPase assembly," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Hui Tu & Zhimeng Wang & Ye Yuan & Xilin Miao & Dong Li & Hu Guo & Yihong Yang & Huaqing Cai, 2022. "The PripA-TbcrA complex-centered Rab GAP cascade facilitates macropinosome maturation in Dictyostelium," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Katherine Bonnycastle & Katharine L. Dobson & Eva-Maria Blumrich & Akshada Gajbhiye & Elizabeth C. Davenport & Marie Pronot & Moritz Steinruecke & Matthias Trost & Alfredo Gonzalez-Sulser & Michael A., 2023. "Reversal of cell, circuit and seizure phenotypes in a mouse model of DNM1 epileptic encephalopathy," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Misty Shuo Zhang & Jane Di Cui & Derek Lee & Vincent Wai-Hin Yuen & David Kung-Chun Chiu & Chi Ching Goh & Jacinth Wing-Sum Cheu & Aki Pui-Wah Tse & Macus Hao-Ran Bao & Bowie Po Yee Wong & Carrie Yili, 2022. "Hypoxia-induced macropinocytosis represents a metabolic route for liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Kay Oliver Schink & Kia Wee Tan & Hélène Spangenberg & Domenica Martorana & Marte Sneeggen & Virginie Stévenin & Jost Enninga & Coen Campsteijn & Camilla Raiborg & Harald Stenmark, 2021. "The phosphoinositide coincidence detector Phafin2 promotes macropinocytosis by coordinating actin organisation at forming macropinosomes," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36496-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.