IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36385-4.html
   My bibliography  Save this article

Phase-engineered cathode for super-stable potassium storage

Author

Listed:
  • Lichen Wu

    (Hunan University
    Hunan University)

  • Hongwei Fu

    (Hunan University
    Hunan University)

  • Shu Li

    (Hunan University
    Hunan University)

  • Jian Zhu

    (Hunan University)

  • Jiang Zhou

    (Central South University)

  • Apparao M. Rao

    (Clemson University)

  • Limei Cha

    (Guangdong Technion–Israel Institute of Technology
    Technion–Israel Institute of Technology
    Guangdong Technion–Israel Institute of Technology)

  • Kunkun Guo

    (Hunan University)

  • Shuangchun Wen

    (Hunan University)

  • Bingan Lu

    (Hunan University
    Hunan University)

Abstract

The crystal phase structure of cathode material plays an important role in the cell performance. During cycling, the cathode material experiences immense stress due to phase transformation, resulting in capacity degradation. Here, we show phase-engineered VO2 as an improved potassium-ion battery cathode; specifically, the amorphous VO2 exhibits superior K storage ability, while the crystalline M phase VO2 cannot even store K+ ions stably. In contrast to other crystal phases, amorphous VO2 exhibits alleviated volume variation and improved electrochemical performance, leading to a maximum capacity of 111 mAh g−1 delivered at 20 mA g−1 and over 8 months of operation with good coulombic efficiency at 100 mA g−1. The capacity retention reaches 80% after 8500 cycles at 500 mA g−1. This work illustrates the effectiveness and superiority of phase engineering and provides meaningful insights into material optimization for rechargeable batteries.

Suggested Citation

  • Lichen Wu & Hongwei Fu & Shu Li & Jian Zhu & Jiang Zhou & Apparao M. Rao & Limei Cha & Kunkun Guo & Shuangchun Wen & Bingan Lu, 2023. "Phase-engineered cathode for super-stable potassium storage," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36385-4
    DOI: 10.1038/s41467-023-36385-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36385-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36385-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Danni Lei & Yan-Bing He & Huijuan Huang & Yifei Yuan & Guiming Zhong & Qiang Zhao & Xiaoge Hao & Danfeng Zhang & Chen Lai & Siwei Zhang & Jiabin Ma & Yinping Wei & Qipeng Yu & Wei Lv & Yan Yu & Baohua, 2019. "Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Jie-Nan Zhang & Qinghao Li & Chuying Ouyang & Xiqian Yu & Mingyuan Ge & Xiaojing Huang & Enyuan Hu & Chao Ma & Shaofeng Li & Ruijuan Xiao & Wanli Yang & Yong Chu & Yijin Liu & Huigen Yu & Xiao-Qing Ya, 2019. "Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V," Nature Energy, Nature, vol. 4(7), pages 594-603, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun-Hyuk Song & Seungju Yu & Byunghoon Kim & Donggun Eum & Jiung Cho & Ho-Young Jang & Sung-O Park & Jaekyun Yoo & Youngmin Ko & Kyeongsu Lee & Myeong Hwan Lee & Byungwook Kang & Kisuk Kang, 2023. "Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Nian Zhang & Guoxi Ren & Lili Li & Zhi Wang & Pengfei Yu & Xiaobao Li & Jing Zhou & Hui Zhang & Linjuan Zhang & Zhi Liu & Xiaosong Liu, 2024. "Dynamical evolution of CO2 and H2O on garnet electrolyte elucidated by ambient pressure X-ray spectroscopies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Xuelong Wang & Liang Yin & Arthur Ronne & Yiman Zhang & Zilin Hu & Sha Tan & Qinchao Wang & Bohang Song & Mengya Li & Xiaohui Rong & Saul Lapidus & Shize Yang & Enyuan Hu & Jue Liu, 2023. "Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Qingyuan Li & De Ning & Deniz Wong & Ke An & Yuxin Tang & Dong Zhou & Götz Schuck & Zhenhua Chen & Nian Zhang & Xiangfeng Liu, 2022. "Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Gang Sun & Fu-Da Yu & Mi Lu & Qingjun Zhu & Yunshan Jiang & Yongzhi Mao & John A. McLeod & Jason Maley & Jian Wang & Jigang Zhou & Zhenbo Wang, 2022. "Surface chemical heterogeneous distribution in over-lithiated Li1+xCoO2 electrodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Yao, Zhendong & Liang, Zhaoqing & Xiao, Xuezhang & Qi, Jiacheng & He, Jiahuan & Huang, Xu & Kou, Huaqin & Luo, Wenhua & Chen, Changan & Chen, Lixin, 2022. "Achieving excellent cycle stability in Zr–Nb–Co–Ni based hydrogen isotope storage alloys by controllable phase transformation reaction," Renewable Energy, Elsevier, vol. 187(C), pages 500-507.
    7. Qian Wu & Mandi Fang & Shizhe Jiao & Siyuan Li & Shichao Zhang & Zeyu Shen & Shulan Mao & Jiale Mao & Jiahui Zhang & Yuanzhong Tan & Kang Shen & Jiaxing Lv & Wei Hu & Yi He & Yingying Lu, 2023. "Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Junbo Zhang & Haikuo Zhang & Suting Weng & Ruhong Li & Di Lu & Tao Deng & Shuoqing Zhang & Ling Lv & Jiacheng Qi & Xuezhang Xiao & Liwu Fan & Shujiang Geng & Fuhui Wang & Lixin Chen & Malachi Noked & , 2023. "Multifunctional solvent molecule design enables high-voltage Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Yi Pei & Qing Chen & Meiyu Wang & Pengjun Zhang & Qingyong Ren & Jingkai Qin & Penghao Xiao & Li Song & Yu Chen & Wen Yin & Xin Tong & Liang Zhen & Peng Wang & Cheng-Yan Xu, 2022. "A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Ho-Young Jang & Donggun Eum & Jiung Cho & Jun Lim & Yeji Lee & Jun-Hyuk Song & Hyeokjun Park & Byunghoon Kim & Do-Hoon Kim & Sung-Pyo Cho & Sugeun Jo & Jae Hoon Heo & Sunyoung Lee & Jongwoo Lim & Kisu, 2024. "Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Perveen, Tahira & Siddiq, Muhammad & Shahzad, Nadia & Ihsan, Rida & Ahmad, Abrar & Shahzad, Muhammad Imran, 2020. "Prospects in anode materials for sodium ion batteries - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Yun Su & Xiaohui Rong & Ang Gao & Yuan Liu & Jianwei Li & Minglei Mao & Xingguo Qi & Guoliang Chai & Qinghua Zhang & Liumin Suo & Lin Gu & Hong Li & Xuejie Huang & Liquan Chen & Binyuan Liu & Yong-She, 2022. "Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Zhichen Xue & Nikhil Sharma & Feixiang Wu & Piero Pianetta & Feng Lin & Luxi Li & Kejie Zhao & Yijin Liu, 2023. "Asynchronous domain dynamics and equilibration in layered oxide battery cathode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Tongchao Liu & Lei Yu & Jun Lu & Tao Zhou & Xiaojing Huang & Zhonghou Cai & Alvin Dai & Jihyeon Gim & Yang Ren & Xianghui Xiao & Martin V. Holt & Yong S. Chu & Ilke Arslan & Jianguo Wen & Khalil Amine, 2021. "Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36385-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.