IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36225-5.html
   My bibliography  Save this article

Engineering the lymph node environment promotes antigen-specific efficacy in type 1 diabetes and islet transplantation

Author

Listed:
  • Joshua M. Gammon

    (University of Maryland, College Park)

  • Sean T. Carey

    (University of Maryland, College Park)

  • Vikas Saxena

    (University of Maryland Medical School)

  • Haleigh B. Eppler

    (University of Maryland, College Park)

  • Shannon J. Tsai

    (University of Maryland, College Park)

  • Christina Paluskievicz

    (University of Maryland Medical School)

  • Yanbao Xiong

    (University of Maryland Medical School)

  • Lushen Li

    (University of Maryland Medical School)

  • Marian Ackun-Farmmer

    (University of Maryland, College Park)

  • Lisa H. Tostanoski

    (University of Maryland, College Park)

  • Emily A. Gosselin

    (University of Maryland, College Park)

  • Alexis A. Yanes

    (University of Maryland, College Park)

  • Xiangbin Zeng

    (University of Maryland, College Park)

  • Robert S. Oakes

    (University of Maryland, College Park
    VA Maryland Health Care System)

  • Jonathan S. Bromberg

    (University of Maryland Medical School
    University of Maryland Medical School)

  • Christopher M. Jewell

    (University of Maryland, College Park
    University of Maryland Medical School
    VA Maryland Health Care System
    University of Maryland Medical School)

Abstract

Antigen-specific tolerance is a key goal of experimental immunotherapies for autoimmune disease and allograft rejection. This outcome could selectively inhibit detrimental inflammatory immune responses without compromising functional protective immunity. A major challenge facing antigen-specific immunotherapies is ineffective control over immune signal targeting and integration, limiting efficacy and causing systemic non-specific suppression. Here we use intra-lymph node injection of diffusion-limited degradable microparticles that encapsulate self-antigens with the immunomodulatory small molecule, rapamycin. We show this strategy potently inhibits disease during pre-clinical type 1 diabetes and allogenic islet transplantation. Antigen and rapamycin are required for maximal efficacy, and tolerance is accompanied by expansion of antigen-specific regulatory T cells in treated and untreated lymph nodes. The antigen-specific tolerance in type 1 diabetes is systemic but avoids non-specific immune suppression. Further, microparticle treatment results in the development of tolerogenic structural microdomains in lymph nodes. Finally, these local structural and functional changes in lymph nodes promote memory markers among antigen-specific regulatory T cells, and tolerance that is durable. This work supports intra-lymph node injection of tolerogenic microparticles as a powerful platform to promote antigen-dependent efficacy in type 1 diabetes and allogenic islet transplantation.

Suggested Citation

  • Joshua M. Gammon & Sean T. Carey & Vikas Saxena & Haleigh B. Eppler & Shannon J. Tsai & Christina Paluskievicz & Yanbao Xiong & Lushen Li & Marian Ackun-Farmmer & Lisa H. Tostanoski & Emily A. Gosseli, 2023. "Engineering the lymph node environment promotes antigen-specific efficacy in type 1 diabetes and islet transplantation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36225-5
    DOI: 10.1038/s41467-023-36225-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36225-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36225-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Koichi Araki & Alexandra P. Turner & Virginia Oliva Shaffer & Shivaprakash Gangappa & Susanne A. Keller & Martin F. Bachmann & Christian P. Larsen & Rafi Ahmed, 2009. "mTOR regulates memory CD8 T-cell differentiation," Nature, Nature, vol. 460(7251), pages 108-112, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandria C. Wells & Kaito A. Hioki & Constance C. Angelou & Adam C. Lynch & Xueting Liang & Daniel J. Ryan & Iris Thesmar & Saule Zhanybekova & Saulius Zuklys & Jacob Ullom & Agnes Cheong & Jesse Ma, 2023. "Let-7 enhances murine anti-tumor CD8 T cell responses by promoting memory and antagonizing terminal differentiation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Victor Joo & Karim Abdelhamid & Alessandra Noto & Sofiya Latifyan & Federica Martina & Douglas Daoudlarian & Rita De Micheli & Menno Pruijm & Solange Peters & Roger Hullin & Olivier Gaide & Giuseppe P, 2024. "Primary prophylaxis with mTOR inhibitor enhances T cell effector function and prevents heart transplant rejection during talimogene laherparepvec therapy of squamous cell carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Diane Maurice & Patrick Costello & Jessica Diring & Francesco Gualdrini & Bruno Frederico & Richard Treisman, 2024. "IL-2 delivery to CD8+ T cells during infection requires MRTF/SRF-dependent gene expression and cytoskeletal dynamics," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Luca Simula & Mattia Fumagalli & Lene Vimeux & Irena Rajnpreht & Philippe Icard & Gary Birsen & Dongjie An & Frédéric Pendino & Adrien Rouault & Nadège Bercovici & Diane Damotte & Audrey Lupo-Mansuet , 2024. "Mitochondrial metabolism sustains CD8+ T cell migration for an efficient infiltration into solid tumors," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    5. Viviana Volta & Sandra Pérez-Baos & Columba Parra & Olga Katsara & Amanda Ernlund & Sophie Dornbaum & Robert J. Schneider, 2021. "A DAP5/eIF3d alternate mRNA translation mechanism promotes differentiation and immune suppression by human regulatory T cells," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36225-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.