IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36172-1.html
   My bibliography  Save this article

Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits

Author

Listed:
  • Armando Azua-Bustos

    (Centro de Astrobiología (CAB) (CSIC-INTA)
    Universidad Autónoma de Chile)

  • Alberto G. Fairén

    (Centro de Astrobiología (CAB) (CSIC-INTA)
    Cornell University)

  • Carlos González-Silva

    (Universidad de Tarapacá)

  • Olga Prieto-Ballesteros

    (Centro de Astrobiología (CAB) (CSIC-INTA))

  • Daniel Carrizo

    (Centro de Astrobiología (CAB) (CSIC-INTA))

  • Laura Sánchez-García

    (Centro de Astrobiología (CAB) (CSIC-INTA))

  • Victor Parro

    (Centro de Astrobiología (CAB) (CSIC-INTA))

  • Miguel Ángel Fernández-Martínez

    (Universidad Autónoma de Madrid)

  • Cristina Escudero

    (Centro de Astrobiología (CAB) (CSIC-INTA))

  • Victoria Muñoz-Iglesias

    (Centro de Astrobiología (CAB) (CSIC-INTA))

  • Maite Fernández-Sampedro

    (Centro de Astrobiología (CAB) (CSIC-INTA))

  • Antonio Molina

    (Centro de Astrobiología (CAB) (CSIC-INTA))

  • Miriam García Villadangos

    (Centro de Astrobiología (CAB) (CSIC-INTA))

  • Mercedes Moreno-Paz

    (Centro de Astrobiología (CAB) (CSIC-INTA))

  • Jacek Wierzchos

    (Museo Nacional de Ciencias Naturales (CSIC))

  • Carmen Ascaso

    (Museo Nacional de Ciencias Naturales (CSIC))

  • Teresa Fornaro

    (INAF-Astrophysical Observatory of Arcetri)

  • John Robert Brucato

    (INAF-Astrophysical Observatory of Arcetri)

  • Giovanni Poggiali

    (INAF-Astrophysical Observatory of Arcetri)

  • Jose Antonio Manrique

    (Universidad de Valladolid
    Institut de Recherche en Astrophysique et Planétologie (IRAP))

  • Marco Veneranda

    (Universidad de Valladolid)

  • Guillermo López-Reyes

    (Universidad de Valladolid)

  • Aurelio Sanz-Arranz

    (Universidad de Valladolid)

  • Fernando Rull

    (Universidad de Valladolid)

  • Ann M. Ollila

    (Purdue University, Earth, Atmospheric, and Planetary Sciences)

  • Roger C. Wiens

    (Purdue University, Earth, Atmospheric, and Planetary Sciences)

  • Adriana Reyes-Newell

    (Southwest Sciences, Inc. 1570 Pacheco St. Ste. E11)

  • Samuel M. Clegg

    (Purdue University, Earth, Atmospheric, and Planetary Sciences)

  • Maëva Millan

    (Georgetown University
    NASA Goddard Space Flight Center, Solar System Exploration Division
    LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, 11 Bd d’Alembert)

  • Sarah Stewart Johnson

    (Georgetown University
    Georgetown University)

  • Ophélie McIntosh

    (INAF-Astrophysical Observatory of Arcetri
    Georgetown University)

  • Cyril Szopa

    (Georgetown University)

  • Caroline Freissinet

    (Georgetown University)

  • Yasuhito Sekine

    (Earth-Life Science Institute (ELSI), Tokyo Institute of Technology
    Kanazawa University)

  • Keisuke Fukushi

    (Kanazawa University)

  • Koki Morida

    (Kanazawa University)

  • Kosuke Inoue

    (Kanazawa University)

  • Hiroshi Sakuma

    (National Institute for Materials Science)

  • Elizabeth Rampe

    (Astromaterials Research and Exploration Science Division, NASA Johnson Space Center)

Abstract

Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan–fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologically analogous to Mars. We show that Red Stone samples display an important number of microorganisms with an unusual high rate of phylogenetic indeterminacy, what we refer to as “dark microbiome”, and a mix of biosignatures from extant and ancient microorganisms that can be barely detected with state-of-the-art laboratory equipment. Our analyses by testbed instruments that are on or will be sent to Mars unveil that although the mineralogy of Red Stone matches that detected by ground-based instruments on the red planet, similarly low levels of organics will be hard, if not impossible to detect in Martian rocks depending on the instrument and technique used. Our results stress the importance in returning samples to Earth for conclusively addressing whether life ever existed on Mars.

Suggested Citation

  • Armando Azua-Bustos & Alberto G. Fairén & Carlos González-Silva & Olga Prieto-Ballesteros & Daniel Carrizo & Laura Sánchez-García & Victor Parro & Miguel Ángel Fernández-Martínez & Cristina Escudero &, 2023. "Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36172-1
    DOI: 10.1038/s41467-023-36172-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36172-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36172-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christian Rinke & Patrick Schwientek & Alexander Sczyrba & Natalia N. Ivanova & Iain J. Anderson & Jan-Fang Cheng & Aaron Darling & Stephanie Malfatti & Brandon K. Swan & Esther A. Gies & Jeremy A. Do, 2013. "Insights into the phylogeny and coding potential of microbial dark matter," Nature, Nature, vol. 499(7459), pages 431-437, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Susanne Krause & Sabrina Gfrerer & Andriko Kügelgen & Carsten Reuse & Nina Dombrowski & Laura Villanueva & Boyke Bunk & Cathrin Spröer & Thomas R. Neu & Ute Kuhlicke & Kerstin Schmidt-Hohagen & Karste, 2022. "The importance of biofilm formation for cultivation of a Micrarchaeon and its interactions with its Thermoplasmatales host," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Su Ding & Joshua N. Hamm & Nicole J. Bale & Jaap S. Sinninghe Damsté & Anja Spang, 2024. "Selective lipid recruitment by an archaeal DPANN symbiont from its host," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Hao Leng & Yinzhao Wang & Weishu Zhao & Stefan M. Sievert & Xiang Xiao, 2023. "Identification of a deep-branching thermophilic clade sheds light on early bacterial evolution," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Tara A. Mahendrarajah & Edmund R. R. Moody & Dominik Schrempf & Lénárd L. Szánthó & Nina Dombrowski & Adrián A. Davín & Davide Pisani & Philip C. J. Donoghue & Gergely J. Szöllősi & Tom A. Williams & , 2023. "ATP synthase evolution on a cross-braced dated tree of life," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Zhiguang Qiu & Li Yuan & Chun-Ang Lian & Bin Lin & Jie Chen & Rong Mu & Xuejiao Qiao & Liyu Zhang & Zheng Xu & Lu Fan & Yunzeng Zhang & Shanquan Wang & Junyi Li & Huiluo Cao & Bing Li & Baowei Chen & , 2024. "BASALT refines binning from metagenomic data and increases resolution of genome-resolved metagenomic analysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Matthew D. Johnson & Doulin C. Shepherd & Hiroyuki D. Sakai & Manasi Mudaliyar & Arun Prasad Pandurangan & Francesca L. Short & Paul D. Veith & Nichollas E. Scott & Norio Kurosawa & Debnath Ghosal, 2024. "Cell-to-cell interactions revealed by cryo-tomography of a DPANN co-culture system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Antonia Bruno & Giulia Agostinetto & Sara Fumagalli & Giulia Ghisleni & Anna Sandionigi, 2022. "It’s a Long Way to the Tap: Microbiome and DNA-Based Omics at the Core of Drinking Water Quality," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    9. Natasha K. Dudek & Jesus G. Galaz-Montoya & Handuo Shi & Megan Mayer & Cristina Danita & Arianna I. Celis & Tobias Viehboeck & Gong-Her Wu & Barry Behr & Silvia Bulgheresi & Kerwyn Casey Huang & Wah C, 2023. "Previously uncharacterized rectangular bacterial structures in the dolphin mouth," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Tamara Nazina & Tamara Babich & Nadezhda Kostryukova & Diyana Sokolova & Ruslan Abdullin & Tatyana Tourova & Vitaly Kadnikov & Andrey Mardanov & Nikolai Ravin & Denis Grouzdev & Andrey Poltaraus & Ste, 2020. "Ultramicrobacteria from Nitrate- and Radionuclide-Contaminated Groundwater," Sustainability, MDPI, vol. 12(3), pages 1-27, February.
    11. Steffen Buessecker & Marike Palmer & Dengxun Lai & Joshua Dimapilis & Xavier Mayali & Damon Mosier & Jian-Yu Jiao & Daniel R. Colman & Lisa M. Keller & Emily St. John & Michelle Miranda & Cristina Gon, 2022. "An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Bin Ma & Caiyu Lu & Yiling Wang & Jingwen Yu & Kankan Zhao & Ran Xue & Hao Ren & Xiaofei Lv & Ronghui Pan & Jiabao Zhang & Yongguan Zhu & Jianming Xu, 2023. "A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Zhirui Zeng & Huahui Chen & Huan Yang & Yufei Chen & Wei Yang & Xi Feng & Hongye Pei & Paula V. Welander, 2022. "Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36172-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.