IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35966-7.html
   My bibliography  Save this article

Common evolutionary trajectory of short life-cycle in Brassicaceae ruderal weeds

Author

Listed:
  • Ling-Zi Li

    (Chinese Academy of Sciences (CAS))

  • Zhou-Geng Xu

    (Chinese Academy of Sciences (CAS)
    University of Chinese Academy of Sciences)

  • Tian-Gen Chang

    (Chinese Academy of Sciences (CAS))

  • Long Wang

    (Chinese Academy of Sciences (CAS))

  • Heng Kang

    (Nanjing University)

  • Dong Zhai

    (Chinese Academy of Sciences (CAS)
    University of Chinese Academy of Sciences)

  • Lu-Yi Zhang

    (Chinese Academy of Sciences (CAS)
    University of Chinese Academy of Sciences)

  • Peng Zhang

    (Chinese Academy of Sciences (CAS))

  • Hongtao Liu

    (Chinese Academy of Sciences (CAS))

  • Xin-Guang Zhu

    (Chinese Academy of Sciences (CAS))

  • Jia-Wei Wang

    (Chinese Academy of Sciences (CAS)
    ShanghaiTech University)

Abstract

Weed species are detrimental to crop yield. An understanding of how weeds originate and adapt to field environments is needed for successful crop management and reduction of herbicide use. Although early flowering is one of the weed trait syndromes that enable ruderal weeds to overcome frequent disturbances, the underlying genetic basis is poorly understood. Here, we establish Cardamine occulta as a model to study weed ruderality. By genome assembly and QTL mapping, we identify impairment of the vernalization response regulator gene FLC and a subsequent dominant mutation in the blue-light receptor gene CRY2 as genetic drivers for the establishment of short life cycle in ruderal weeds. Population genomics study further suggests that the mutations in these two genes enable individuals to overcome human disturbances through early deposition of seeds into the soil seed bank and quickly dominate local populations, thereby facilitating their spread in East China. Notably, functionally equivalent dominant mutations in CRY2 are shared by another weed species, Rorippa palustris, suggesting a common evolutionary trajectory of early flowering in ruderal weeds in Brassicaceae.

Suggested Citation

  • Ling-Zi Li & Zhou-Geng Xu & Tian-Gen Chang & Long Wang & Heng Kang & Dong Zhai & Lu-Yi Zhang & Peng Zhang & Hongtao Liu & Xin-Guang Zhu & Jia-Wei Wang, 2023. "Common evolutionary trajectory of short life-cycle in Brassicaceae ruderal weeds," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35966-7
    DOI: 10.1038/s41467-023-35966-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35966-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35966-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcelo J. Yanovsky & Steve A. Kay, 2002. "Molecular basis of seasonal time measurement in Arabidopsis," Nature, Nature, vol. 419(6904), pages 308-312, September.
    2. Longbiao Guo & Jie Qiu & Chuyu Ye & Gulei Jin & Lingfeng Mao & Haiqiang Zhang & Xuefang Yang & Qiong Peng & Yingying Wang & Lei Jia & Zhangxiang Lin & Gengmi Li & Fei Fu & Chen Liu & Li Chen & Enhui S, 2017. "Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    3. Andrea Fulgione & Célia Neto & Ahmed F. Elfarargi & Emmanuel Tergemina & Shifa Ansari & Mehmet Göktay & Herculano Dinis & Nina Döring & Pádraic J. Flood & Sofia Rodriguez-Pacheco & Nora Walden & Marcu, 2022. "Parallel reduction in flowering time from de novo mutations enable evolutionary rescue in colonizing lineages," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Jie Qiu & Yongjun Zhou & Lingfeng Mao & Chuyu Ye & Weidi Wang & Jianping Zhang & Yongyi Yu & Fei Fu & Yunfei Wang & Feijian Qian & Ting Qi & Sanling Wu & Most Humaira Sultana & Ya-Nan Cao & Yu Wang & , 2017. "Genomic variation associated with local adaptation of weedy rice during de-domestication," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongya Wu & Enhui Shen & Bowen Jiang & Yu Feng & Wei Tang & Sangting Lao & Lei Jia & Han-Yang Lin & Lingjuan Xie & Xifang Weng & Chenfeng Dong & Qinghong Qian & Feng Lin & Haiming Xu & Huabing Lu & Lu, 2022. "Genomic insights into the evolution of Echinochloa species as weed and orphan crop," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Zhiwei Zhao & Craig Dent & Huafeng Liang & Junqing Lv & Guandong Shang & Yawen Liu & Fan Feng & Fei Wang & Junhong Pang & Xu Li & Libang Ma & Bing Li & Sridevi Sureshkumar & Jia-Wei Wang & Sureshkumar, 2022. "CRY2 interacts with CIS1 to regulate thermosensory flowering via FLM alternative splicing," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Singh, Devesh & Basu, Chandrajit & Meinhardt-Wollweber, Merve & Roth, Bernhard, 2015. "LEDs for energy efficient greenhouse lighting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 139-147.
    4. Filippos Bantis & Anna Gkotzamani & Christodoulos Dangitsis & Athanasios Koukounaras, 2022. "A Light Recipe including Far-Red Wavelength during Healing of Grafted Watermelon Seedlings Enhances the Floral Development and Yield Earliness," Agriculture, MDPI, vol. 12(7), pages 1-10, July.
    5. Jian Sun & Guangchen Zhang & Zhibo Cui & Ximan Kong & Xiaoyu Yu & Rui Gui & Yuqing Han & Zhuan Li & Hong Lang & Yuchen Hua & Xuemin Zhang & Quan Xu & Liang Tang & Zhengjin Xu & Dianrong Ma & Wenfu Che, 2022. "Regain flood adaptation in rice through a 14-3-3 protein OsGF14h," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Welch, S.M. & Roe, J.L. & Das, S. & Dong, Z. & He, R. & Kirkham, M.B., 2005. "Merging genomic control networks and soil-plant-atmosphere-continuum models," Agricultural Systems, Elsevier, vol. 86(3), pages 243-274, December.
    7. Lin-Feng Li & Tonapha Pusadee & Marshall J. Wedger & Ya-Ling Li & Ming-Rui Li & Yee-Ling Lau & Soo-Joo Yap & Sansanee Jamjod & Benjavan Rerkasem & Yan Hao & Beng-Kah Song & Kenneth M. Olsen, 2024. "Porous borders at the wild-crop interface promote weed adaptation in Southeast Asia," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35966-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.