IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35914-5.html
   My bibliography  Save this article

Kaposi’s sarcoma-associated herpesvirus induces specialised ribosomes to efficiently translate viral lytic mRNAs

Author

Listed:
  • James C. Murphy

    (University of Leeds
    University of Leeds)

  • Elena M. Harrington

    (University of Leeds
    University of Leeds)

  • Sophie Schumann

    (University of Leeds
    University of Leeds)

  • Elton J. R. Vasconcelos

    (LeedsOmics, University of Leeds)

  • Timothy J. Mottram

    (University of Leeds
    University of Leeds)

  • Katherine L. Harper

    (University of Leeds
    University of Leeds)

  • Julie L. Aspden

    (University of Leeds
    University of Leeds
    LeedsOmics, University of Leeds)

  • Adrian Whitehouse

    (University of Leeds
    University of Leeds
    LeedsOmics, University of Leeds
    Rhodes University)

Abstract

Historically, ribosomes were viewed as unchanged homogeneous macromolecular machines with no regulatory capacity for mRNA translation. An emerging concept is that heterogeneity of ribosomal composition exists, exerting a regulatory function or specificity in translational control. This is supported by recent discoveries identifying compositionally distinct specialised ribosomes that actively regulate mRNA translation. Viruses lack their own translational machinery and impose high translational demands on the host during replication. We explore the possibility that KSHV manipulates ribosome biogenesis producing specialised ribosomes which preferentially translate viral transcripts. Quantitative proteomic analysis identified changes in the stoichiometry and composition of precursor ribosomal complexes during the switch from latent to lytic replication. We demonstrate the enhanced association of ribosomal biogenesis factors BUD23 and NOC4L, and the KSHV ORF11 protein, with small ribosomal subunit precursor complexes during lytic replication. BUD23 depletion resulted in significantly reduced viral gene expression, culminating in dramatic reduction of infectious virion production. Ribosome profiling demonstrated BUD23 is essential for reduced association of ribosomes with KSHV uORFs in late lytic genes, required for the efficient translation of the downstream coding sequence. Results provide mechanistic insights into KSHV-mediated manipulation of cellular ribosome composition inducing a population of specialised ribosomes facilitating efficient translation of viral mRNAs.

Suggested Citation

  • James C. Murphy & Elena M. Harrington & Sophie Schumann & Elton J. R. Vasconcelos & Timothy J. Mottram & Katherine L. Harper & Julie L. Aspden & Adrian Whitehouse, 2023. "Kaposi’s sarcoma-associated herpesvirus induces specialised ribosomes to efficiently translate viral lytic mRNAs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35914-5
    DOI: 10.1038/s41467-023-35914-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35914-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35914-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Emilien Nicolas & Pascaline Parisot & Celina Pinto-Monteiro & Roxane de Walque & Christophe De Vleeschouwer & Denis L. J. Lafontaine, 2016. "Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress," Nature Communications, Nature, vol. 7(1), pages 1-12, September.
    2. Ulf-Peter Guenther & David E. Weinberg & Meghan M. Zubradt & Frank A. Tedeschi & Brittany N. Stawicki & Leah L. Zagore & Gloria A. Brar & Donny D. Licatalosi & David P. Bartel & Jonathan S. Weissman &, 2018. "The helicase Ded1p controls use of near-cognate translation initiation codons in 5′ UTRs," Nature, Nature, vol. 559(7712), pages 130-134, July.
    3. Sujata Jha & Madeline G. Rollins & Gabriele Fuchs & Dean J. Procter & Elizabeth A. Hall & Kira Cozzolino & Peter Sarnow & Jeffrey N. Savas & Derek Walsh, 2017. "Trans-kingdom mimicry underlies ribosome customization by a poxvirus kinase," Nature, Nature, vol. 546(7660), pages 651-655, June.
    4. Michael Ameismeier & Jingdong Cheng & Otto Berninghausen & Roland Beckmann, 2018. "Visualizing late states of human 40S ribosomal subunit maturation," Nature, Nature, vol. 558(7709), pages 249-253, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samim Sharifi & Prerana Chaudhari & Asya Martirosyan & Alexander Otto Eberhardt & Finja Witt & André Gollowitzer & Lisa Lange & Yvonne Woitzat & Eberechukwu Maryann Okoli & Huahui Li & Norman Rahnis &, 2024. "Reducing the metabolic burden of rRNA synthesis promotes healthy longevity in Caenorhabditis elegans," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Yifei Gu & Yuanhui Mao & Longfei Jia & Leiming Dong & Shu-Bing Qian, 2021. "Bi-directional ribosome scanning controls the stringency of start codon selection," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Judith Dönig & Hannah Mende & Jimena Davila Gallesio & Kristina Wagner & Paul Hotz & Kathrin Schunck & Tanja Piller & Soraya Hölper & Sara Uhan & Manuel Kaulich & Matthias Wirth & Ulrich Keller & Geor, 2023. "Characterization of nucleolar SUMO isopeptidases unveils a general p53-independent checkpoint of impaired ribosome biogenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Omar M. Hedaya & Kadiam C. Venkata Subbaiah & Feng Jiang & Li Huitong Xie & Jiangbin Wu & Eng-Soon Khor & Mingyi Zhu & David H. Mathews & Chris Proschel & Peng Yao, 2023. "Secondary structures that regulate mRNA translation provide insights for ASO-mediated modulation of cardiac hypertrophy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Hua Yu & Zhen Sun & Tianyu Tan & Hongru Pan & Jing Zhao & Ling Zhang & Jiayu Chen & Anhua Lei & Yuqing Zhu & Lang Chen & Yuyan Xu & Yaxin Liu & Ming Chen & Jinghao Sheng & Zhengping Xu & Pengxu Qian &, 2021. "rRNA biogenesis regulates mouse 2C-like state by 3D structure reorganization of peri-nucleolar heterochromatin," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    6. Melvin Pan & Christiane Zorbas & Maki Sugaya & Kensuke Ishiguro & Miki Kato & Miyuki Nishida & Hai-Feng Zhang & Marco M. Candeias & Akimitsu Okamoto & Takamasa Ishikawa & Tomoyoshi Soga & Hiroyuki Abu, 2022. "Glutamine deficiency in solid tumor cells confers resistance to ribosomal RNA synthesis inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Ken Ikeuchi & Nives Ivic & Robert Buschauer & Jingdong Cheng & Thomas Fröhlich & Yoshitaka Matsuo & Otto Berninghausen & Toshifumi Inada & Thomas Becker & Roland Beckmann, 2023. "Molecular basis for recognition and deubiquitination of 40S ribosomes by Otu2," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Xiaomeng Liang & Mei-Qing Zuo & Yunyang Zhang & Ningning Li & Chengying Ma & Meng-Qiu Dong & Ning Gao, 2020. "Structural snapshots of human pre-60S ribosomal particles before and after nuclear export," Nature Communications, Nature, vol. 11(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35914-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.