IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35514-9.html
   My bibliography  Save this article

Biodiversity stabilizes plant communities through statistical-averaging effects rather than compensatory dynamics

Author

Listed:
  • Lei Zhao

    (China Agricultural University)

  • Shaopeng Wang

    (Peking University)

  • Ruohong Shen

    (China Agricultural University)

  • Ying Gong

    (China Agricultural University)

  • Chong Wang

    (China Agricultural University)

  • Pubin Hong

    (Peking University)

  • Daniel C. Reuman

    (University of Kansas, Higuchi Hall)

Abstract

Understanding the relationship between biodiversity and ecosystem stability is a central goal of ecologists. Recent studies have concluded that biodiversity increases community temporal stability by increasing the asynchrony between the dynamics of different species. Theoretically, this enhancement can occur through either increased between-species compensatory dynamics, a fundamentally biological mechanism; or through an averaging effect, primarily a statistical mechanism. Yet it remains unclear which mechanism is dominant in explaining the diversity-stability relationship. We address this issue by mathematically decomposing asynchrony into components separately quantifying the compensatory and statistical-averaging effects. We applied the new decomposition approach to plant survey and experimental data from North American grasslands. We show that statistical averaging, rather than compensatory dynamics, was the principal mediator of biodiversity effects on community stability. Our simple decomposition approach helps integrate concepts of stability, asynchrony, statistical averaging, and compensatory dynamics, and suggests that statistical averaging, rather than compensatory dynamics, is the primary means by which biodiversity confers ecological stability.

Suggested Citation

  • Lei Zhao & Shaopeng Wang & Ruohong Shen & Ying Gong & Chong Wang & Pubin Hong & Daniel C. Reuman, 2022. "Biodiversity stabilizes plant communities through statistical-averaging effects rather than compensatory dynamics," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35514-9
    DOI: 10.1038/s41467-022-35514-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35514-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35514-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yann Hautier & Eric W. Seabloom & Elizabeth T. Borer & Peter B. Adler & W. Stanley Harpole & Helmut Hillebrand & Eric M. Lind & Andrew S. MacDougall & Carly J. Stevens & Jonathan D. Bakker & Yvonne M., 2014. "Eutrophication weakens stabilizing effects of diversity in natural grasslands," Nature, Nature, vol. 508(7497), pages 521-525, April.
    2. Yann Hautier & Pengfei Zhang & Michel Loreau & Kevin R. Wilcox & Eric W. Seabloom & Elizabeth T. Borer & Jarrett E. K. Byrnes & Sally E. Koerner & Kimberly J. Komatsu & Jonathan S. Lefcheck & Andy Hec, 2021. "Author Correction: General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    3. Delphine Renard & David Tilman, 2019. "National food production stabilized by crop diversity," Nature, Nature, vol. 571(7764), pages 257-260, July.
    4. Lukas Egli & Matthias Schröter & Christoph Scherber & Teja Tscharntke & Ralf Seppelt, 2020. "Crop asynchrony stabilizes food production," Nature, Nature, vol. 588(7837), pages 7-12, December.
    5. David Tilman & Peter B. Reich & Johannes M. H. Knops, 2006. "Biodiversity and ecosystem stability in a decade-long grassland experiment," Nature, Nature, vol. 441(7093), pages 629-632, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew C. LaFevor, 2022. "Crop Species Production Diversity Enhances Revenue Stability in Low-Income Farm Regions of Mexico," Agriculture, MDPI, vol. 12(11), pages 1-22, November.
    2. Donohue, Ian & Coscieme, Luca & Gellner, Gabriel & Yang, Qiang & Jackson, Andrew L. & Kubiszewski, Ida & Costanza, Robert & McCann, Kevin S., 2023. "Accelerated economic recovery in countries powered by renewables," Ecological Economics, Elsevier, vol. 212(C).
    3. Pedro Daleo & Juan Alberti & Enrique J. Chaneton & Oscar Iribarne & Pedro M. Tognetti & Jonathan D. Bakker & Elizabeth T. Borer & Martín Bruschetti & Andrew S. MacDougall & Jesús Pascual & Mahesh Sank, 2023. "Environmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomass," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yuzhu Zou & Zhenshan Liu & Yan Chen & Yin Wang & Shijing Feng, 2024. "Crop Rotation and Diversification in China: Enhancing Sustainable Agriculture and Resilience," Agriculture, MDPI, vol. 14(9), pages 1-14, August.
    5. Qiu, Bingwen & Jian, Zeyu & Yang, Peng & Tang, Zhenghong & Zhu, Xiaolin & Duan, Mingjie & Yu, Qiangyi & Chen, Xuehong & Zhang, Miao & Tu, Ping & Xu, Weiming & Zhao, Zhiyuan, 2024. "Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification," Agricultural Systems, Elsevier, vol. 216(C).
    6. Nilsson, Pia & Bommarco, Riccardo & Hansson, Helena & Kuns, Brian & Schaak, Henning, 2022. "Farm performance and input self-sufficiency increases with functional crop diversity on Swedish farms," Ecological Economics, Elsevier, vol. 198(C).
    7. Samuel E. Wuest & Lukas Schulz & Surbhi Rana & Julia Frommelt & Merten Ehmig & Nuno D. Pires & Ueli Grossniklaus & Christian S. Hardtke & Ulrich Z. Hammes & Bernhard Schmid & Pascal A. Niklaus, 2023. "Single-gene resolution of diversity-driven overyielding in plant genotype mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Qingqing Chen & Shaopeng Wang & Elizabeth T. Borer & Jonathan D. Bakker & Eric W. Seabloom & W. Stanley Harpole & Nico Eisenhauer & Ylva Lekberg & Yvonne M. Buckley & Jane A. Catford & Christiane Rosc, 2023. "Multidimensional responses of grassland stability to eutrophication," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Sharma, Priyanka & Shanoyan, Aleksan & Yao, Becatien H., 2024. "Effects of On-Farm Diversification on Farm Resilience: Evidence from Kansas," 2024 Annual Meeting, July 28-30, New Orleans, LA 344059, Agricultural and Applied Economics Association.
    10. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    11. Matteo Zampieri & Andrea Toreti & Andrej Ceglar & Pierluca De Palma & Thomas Chatzopoulos, 2020. "Analysing the resilience of the European commodity production system with PyResPro, the Python Production Resilience package," Papers 2006.08976, arXiv.org, revised Jun 2020.
    12. Revoyron, Eva & Le Bail, Marianne & Meynard, Jean-Marc & Gunnarsson, Anita & Seghetti, Marco & Colombo, Luca, 2022. "Diversity and drivers of crop diversification pathways of European farms," Agricultural Systems, Elsevier, vol. 201(C).
    13. Katrin Martens & Sebastian Rogga & Jana Zscheischler & Bernd Pölling & Andreas Obersteg & Annette Piorr, 2022. "Classifying New Hybrid Cooperation Models for Short Food-Supply Chains—Providing a Concept for Assessing Sustainability Transformation in the Urban-Rural Nexus," Land, MDPI, vol. 11(4), pages 1-24, April.
    14. Moritz von Cossel & Andrea Bauerle & Meike Boob & Ulrich Thumm & Martin Elsaesser & Iris Lewandowski, 2019. "The Performance of Mesotrophic Arrhenatheretum Grassland under Different Cutting Frequency Regimes for Biomass Production in Southwest Germany," Agriculture, MDPI, vol. 9(9), pages 1-17, September.
    15. Wei Wang & Xin Luo & Chongmei Zhang & Jiahao Song & Dingde Xu, 2021. "Can Land Transfer Alleviate the Poverty of the Elderly? Evidence from Rural China," IJERPH, MDPI, vol. 18(21), pages 1-15, October.
    16. Helena Kahiluoto & Janne Kaseva, 2016. "No Evidence of Trade-Off between Farm Efficiency and Resilience: Dependence of Resource-Use Efficiency on Land-Use Diversity," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-16, September.
    17. Ulukan, Defne & Grillot, Myriam & Benoit, Marc & Bernes, Gun & Dumont, Bertrand & Magne, Marie-Angélina & Monteiro, Leonardo & Parsons, David & Veysset, Patrick & Ryschawy, Julie & Steinmetz, Lucille , 2022. "Positive deviant strategies implemented by organic multi-species livestock farms in Europe," Agricultural Systems, Elsevier, vol. 201(C).
    18. Philip A. Loring, 2022. "Regenerative food systems and the conservation of change," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 701-713, June.
    19. Gao, Hailong & Shi, Qianyun & Qian, Xin, 2017. "A multi-species modelling approach to select appropriate submerged macrophyte species for ecological restoration in Gonghu Bay, Lake Taihu, China," Ecological Modelling, Elsevier, vol. 360(C), pages 179-188.
    20. Emile A. Frison & Jeremy Cherfas & Toby Hodgkin, 2011. "Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security," Sustainability, MDPI, vol. 3(1), pages 1-16, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35514-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.