CRL2ZER1/ZYG11B recognizes small N-terminal residues for degradation
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-35169-6
Download full text from publisher
References listed on IDEAS
- Eric Linster & Francy L. Forero Ruiz & Pavlina Miklankova & Thomas Ruppert & Johannes Mueller & Laura Armbruster & Xiaodi Gong & Giovanna Serino & Matthias Mann & Rüdiger Hell & Markus Wirtz, 2022. "Cotranslational N-degron masking by acetylation promotes proteome stability in plants," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sylvia Varland & Rui Duarte Silva & Ine Kjosås & Alexandra Faustino & Annelies Bogaert & Maximilian Billmann & Hadi Boukhatmi & Barbara Kellen & Michael Costanzo & Adrian Drazic & Camilla Osberg & Kat, 2023. "N-terminal acetylation shields proteins from degradation and promotes age-dependent motility and longevity," Nature Communications, Nature, vol. 14(1), pages 1-27, December.
- Mengyu Zhou & Xiaolu Wang & Jiangtao Li & Jinfeng Ma & Ziyu Bao & Xiaojie Yan & Bing Zhang & Tong Liu & Ying Yu & Wenyi Mi & Cheng Dong, 2024. "Molecular insights into degron recognition by CRL5ASB7 ubiquitin ligase," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Xiaolu Wang & Yao Li & Xiaojie Yan & Qing Yang & Bing Zhang & Ying Zhang & Xinxin Yuan & Chenhao Jiang & Dongxing Chen & Quanyan Liu & Tong Liu & Wenyi Mi & Ying Yu & Cheng Dong, 2023. "Recognition of an Ala-rich C-degron by the E3 ligase Pirh2," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Charlotte M. François & Thomas Pihl & Marion Dunoyer de Segonzac & Chloé Hérault & Bruno Hudry, 2023. "Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Sylvia Varland & Rui Duarte Silva & Ine Kjosås & Alexandra Faustino & Annelies Bogaert & Maximilian Billmann & Hadi Boukhatmi & Barbara Kellen & Michael Costanzo & Adrian Drazic & Camilla Osberg & Kat, 2023. "N-terminal acetylation shields proteins from degradation and promotes age-dependent motility and longevity," Nature Communications, Nature, vol. 14(1), pages 1-27, December.
- Karen C. Heathcote & Thomas P. Keeley & Matti Myllykoski & Malin Lundekvam & Nina McTiernan & Salma Akter & Norma Masson & Peter J. Ratcliffe & Thomas Arnesen & Emily Flashman, 2024. "N-terminal cysteine acetylation and oxidation patterns may define protein stability," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Hongliang Zhang & Julia Quintana & Koray Ütkür & Lorenz Adrian & Harmen Hawer & Klaus Mayer & Xiaodi Gong & Leonardo Castanedo & Anna Schulten & Nadežda Janina & Marcus Peters & Markus Wirtz & Ulrich , 2022. "Translational fidelity and growth of Arabidopsis require stress-sensitive diphthamide biosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Ulises H. Guzman & Henriette Aksnes & Rasmus Ree & Nicolai Krogh & Magnus E. Jakobsson & Lars J. Jensen & Thomas Arnesen & Jesper V. Olsen, 2023. "Loss of N-terminal acetyltransferase A activity induces thermally unstable ribosomal proteins and increases their turnover in Saccharomyces cerevisiae," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Viorica Chelban & Henriette Aksnes & Reza Maroofian & Lauren C. LaMonica & Luis Seabra & Anette Siggervåg & Perrine Devic & Hanan E. Shamseldin & Jana Vandrovcova & David Murphy & Anne-Claire Richard , 2024. "Biallelic NAA60 variants with impaired N-terminal acetylation capacity cause autosomal recessive primary familial brain calcifications," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35169-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.