IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50556-x.html
   My bibliography  Save this article

Molecular insights into degron recognition by CRL5ASB7 ubiquitin ligase

Author

Listed:
  • Mengyu Zhou

    (Tianjin Medical University)

  • Xiaolu Wang

    (Tianjin Medical University)

  • Jiangtao Li

    (Tianjin Medical University)

  • Jinfeng Ma

    (Tianjin Medical University)

  • Ziyu Bao

    (Tianjin Medical University)

  • Xiaojie Yan

    (Tianjin Medical University)

  • Bing Zhang

    (Tianjin Medical University)

  • Tong Liu

    (Second Hospital of Tianjin Medical University)

  • Ying Yu

    (Tianjin Medical University)

  • Wenyi Mi

    (Tianjin Medical University)

  • Cheng Dong

    (Tianjin Medical University
    Second Hospital of Tianjin Medical University)

Abstract

The ankyrin (ANK) SOCS box (ASB) family, encompassing ASB1–18, is the largest group of substrate receptors of cullin 5 Ring E3 ubiquitin ligase. Nonetheless, the mechanism of substrate recognition by ASB family proteins has remained largely elusive. Here we present the crystal structure of ASB7-Elongin B-Elongin C ternary complex bound to a conserved helical degron. ASB7 employs its ANK3-6 to form an extended groove, effectively interacting with the internal α-helix-degron through a network of side-chain-mediated electrostatic and hydrophobic interactions. Our structural findings, combined with biochemical and cellular analyses, identify the key residues of the degron motif and ASB7 required for their recognition. This will facilitate the identification of additional physiological substrates of ASB7 by providing a defined degron motif for screening. Furthermore, the structural insights provide a basis for the rational design of compounds that can specifically target ASB7 by disrupting its interaction with its cognate degron.

Suggested Citation

  • Mengyu Zhou & Xiaolu Wang & Jiangtao Li & Jinfeng Ma & Ziyu Bao & Xiaojie Yan & Bing Zhang & Tong Liu & Ying Yu & Wenyi Mi & Cheng Dong, 2024. "Molecular insights into degron recognition by CRL5ASB7 ubiquitin ligase," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50556-x
    DOI: 10.1038/s41467-024-50556-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50556-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50556-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yao Li & Yueling Zhao & Xiaojie Yan & Chen Ye & Sara Weirich & Bing Zhang & Xiaolu Wang & Lili Song & Chenhao Jiang & Albert Jeltsch & Cheng Dong & Wenyi Mi, 2022. "CRL2ZER1/ZYG11B recognizes small N-terminal residues for degradation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Lai Xu & Yue Wei & Jerome Reboul & Philippe Vaglio & Tae-Ho Shin & Marc Vidal & Stephen J. Elledge & J. Wade Harper, 2003. "BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3," Nature, Nature, vol. 425(6955), pages 316-321, September.
    3. Xiaolu Wang & Yao Li & Xiaojie Yan & Qing Yang & Bing Zhang & Ying Zhang & Xinxin Yuan & Chenhao Jiang & Dongxing Chen & Quanyan Liu & Tong Liu & Wenyi Mi & Ying Yu & Cheng Dong, 2023. "Recognition of an Ala-rich C-degron by the E3 ligase Pirh2," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anthony J. Asmar & Shaun R. Abrams & Jenny Hsin & Jason C. Collins & Rita M. Yazejian & Youmei Wu & Jean Cho & Andrew D. Doyle & Samhitha Cinthala & Marleen Simon & Richard H. Jaarsveld & David B. Bec, 2023. "A ubiquitin-based effector-to-inhibitor switch coordinates early brain, craniofacial, and skin development," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Weize Wang & Ling Liang & Zonglin Dai & Peng Zuo & Shang Yu & Yishuo Lu & Dian Ding & Hongyi Chen & Hui Shan & Yan Jin & Youdong Mao & Yuxin Yin, 2024. "A conserved N-terminal motif of CUL3 contributes to assembly and E3 ligase activity of CRL3KLHL22," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Chandrani Mukhopadhyay & Chenyi Yang & Limei Xu & Deli Liu & Yu Wang & Dennis Huang & Lesa Dayal Deonarine & Joanna Cyrta & Elai Davicioni & Andrea Sboner & Brian. D. Robinson & Arul M. Chinnaiyan & M, 2021. "G3BP1 inhibits Cul3SPOP to amplify AR signaling and promote prostate cancer," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    4. Sylvia Varland & Rui Duarte Silva & Ine Kjosås & Alexandra Faustino & Annelies Bogaert & Maximilian Billmann & Hadi Boukhatmi & Barbara Kellen & Michael Costanzo & Adrian Drazic & Camilla Osberg & Kat, 2023. "N-terminal acetylation shields proteins from degradation and promotes age-dependent motility and longevity," Nature Communications, Nature, vol. 14(1), pages 1-27, December.
    5. Xiaolu Wang & Yao Li & Xiaojie Yan & Qing Yang & Bing Zhang & Ying Zhang & Xinxin Yuan & Chenhao Jiang & Dongxing Chen & Quanyan Liu & Tong Liu & Wenyi Mi & Ying Yu & Cheng Dong, 2023. "Recognition of an Ala-rich C-degron by the E3 ligase Pirh2," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50556-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.