IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31712-7.html
   My bibliography  Save this article

Translational fidelity and growth of Arabidopsis require stress-sensitive diphthamide biosynthesis

Author

Listed:
  • Hongliang Zhang

    (Ruhr University Bochum)

  • Julia Quintana

    (Ruhr University Bochum)

  • Koray Ütkür

    (University of Kassel)

  • Lorenz Adrian

    (Helmholtz Centre for Environmental Research—UFZ
    Technische Universität Berlin)

  • Harmen Hawer

    (University of Kassel)

  • Klaus Mayer

    (Roche Innovation Center Munich)

  • Xiaodi Gong

    (University of Heidelberg)

  • Leonardo Castanedo

    (Ruhr University Bochum)

  • Anna Schulten

    (Ruhr University Bochum)

  • Nadežda Janina

    (Ruhr University Bochum)

  • Marcus Peters

    (Ruhr University Bochum)

  • Markus Wirtz

    (University of Heidelberg)

  • Ulrich Brinkmann

    (Roche Innovation Center Munich)

  • Raffael Schaffrath

    (University of Kassel)

  • Ute Krämer

    (Ruhr University Bochum)

Abstract

Diphthamide, a post-translationally modified histidine residue of eukaryotic TRANSLATION ELONGATION FACTOR2 (eEF2), is the human host cell-sensitizing target of diphtheria toxin. Diphthamide biosynthesis depends on the 4Fe-4S-cluster protein Dph1 catalyzing the first committed step, as well as Dph2 to Dph7, in yeast and mammals. Here we show that diphthamide modification of eEF2 is conserved in Arabidopsis thaliana and requires AtDPH1. Ribosomal −1 frameshifting-error rates are increased in Arabidopsis dph1 mutants, similar to yeast and mice. Compared to the wild type, shorter roots and smaller rosettes of dph1 mutants result from fewer formed cells. TARGET OF RAPAMYCIN (TOR) kinase activity is attenuated, and autophagy is activated, in dph1 mutants. Under abiotic stress diphthamide-unmodified eEF2 accumulates in wild-type seedlings, most strongly upon heavy metal excess, which is conserved in human cells. In summary, our results suggest that diphthamide contributes to the functionality of the translational machinery monitored by plants to regulate growth.

Suggested Citation

  • Hongliang Zhang & Julia Quintana & Koray Ütkür & Lorenz Adrian & Harmen Hawer & Klaus Mayer & Xiaodi Gong & Leonardo Castanedo & Anna Schulten & Nadežda Janina & Marcus Peters & Markus Wirtz & Ulrich , 2022. "Translational fidelity and growth of Arabidopsis require stress-sensitive diphthamide biosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31712-7
    DOI: 10.1038/s41467-022-31712-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31712-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31712-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ya-Chieh Hsu & Joshua J. Chern & Yi Cai & Mingyao Liu & Kwang-Wook Choi, 2007. "Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase," Nature, Nature, vol. 445(7129), pages 785-788, February.
    2. Yang Zhang & Xuling Zhu & Andrew T. Torelli & Michael Lee & Boris Dzikovski & Rachel M. Koralewski & Eileen Wang & Jack Freed & Carsten Krebs & Steven E. Ealick & Hening Lin, 2010. "Diphthamide biosynthesis requires an organic radical generated by an iron–sulphur enzyme," Nature, Nature, vol. 465(7300), pages 891-896, June.
    3. Eric Linster & Francy L. Forero Ruiz & Pavlina Miklankova & Thomas Ruppert & Johannes Mueller & Laura Armbruster & Xiaodi Gong & Giovanna Serino & Matthias Mann & Rüdiger Hell & Markus Wirtz, 2022. "Cotranslational N-degron masking by acetylation promotes proteome stability in plants," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charlotte M. François & Thomas Pihl & Marion Dunoyer de Segonzac & Chloé Hérault & Bruno Hudry, 2023. "Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Sylvia Varland & Rui Duarte Silva & Ine Kjosås & Alexandra Faustino & Annelies Bogaert & Maximilian Billmann & Hadi Boukhatmi & Barbara Kellen & Michael Costanzo & Adrian Drazic & Camilla Osberg & Kat, 2023. "N-terminal acetylation shields proteins from degradation and promotes age-dependent motility and longevity," Nature Communications, Nature, vol. 14(1), pages 1-27, December.
    3. Marie C. Schoelmerich & Heleen T. Ouboter & Rohan Sachdeva & Petar I. Penev & Yuki Amano & Jacob West-Roberts & Cornelia U. Welte & Jillian F. Banfield, 2022. "A widespread group of large plasmids in methanotrophic Methanoperedens archaea," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Yao Li & Yueling Zhao & Xiaojie Yan & Chen Ye & Sara Weirich & Bing Zhang & Xiaolu Wang & Lili Song & Chenhao Jiang & Albert Jeltsch & Cheng Dong & Wenyi Mi, 2022. "CRL2ZER1/ZYG11B recognizes small N-terminal residues for degradation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Ulises H. Guzman & Henriette Aksnes & Rasmus Ree & Nicolai Krogh & Magnus E. Jakobsson & Lars J. Jensen & Thomas Arnesen & Jesper V. Olsen, 2023. "Loss of N-terminal acetyltransferase A activity induces thermally unstable ribosomal proteins and increases their turnover in Saccharomyces cerevisiae," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Viorica Chelban & Henriette Aksnes & Reza Maroofian & Lauren C. LaMonica & Luis Seabra & Anette Siggervåg & Perrine Devic & Hanan E. Shamseldin & Jana Vandrovcova & David Murphy & Anne-Claire Richard , 2024. "Biallelic NAA60 variants with impaired N-terminal acetylation capacity cause autosomal recessive primary familial brain calcifications," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31712-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.