IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35167-8.html
   My bibliography  Save this article

IL6 supports long-term expansion of hepatocytes in vitro

Author

Listed:
  • Ren Guo

    (Chinese Academy of Sciences)

  • Mengmeng Jiang

    (Chinese Academy of Sciences
    ShanghaiTech University
    University of Chinese Academy of Sciences)

  • Gang Wang

    (Fudan University)

  • Bing Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiaohui Jia

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yan Ai

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shanshan Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Peilan Tang

    (Chinese Academy of Sciences
    Nanchang University)

  • Aijie Liu

    (Chinese Academy of Sciences)

  • Qianting Yuan

    (Chinese Academy of Sciences)

  • Xin Xie

    (Chinese Academy of Sciences
    ShanghaiTech University
    University of Chinese Academy of Sciences
    Fudan University)

Abstract

Hepatocytes are very difficult to expand in vitro. A few studies have demonstrated that chemical cocktails with growth factors or Wnt ligands can support long-term expansion of hepatocytes via dedifferentiation. However, the culture conditions are complex, and clonal expansion of hepatic progenitors with full differentiation capacity are rarely reported. Here, we discover IL6, combined with EGF and HGF, promotes long-term expansion (>30 passages in ~150 days with theoretical expansion of ~1035 times) of primary mouse hepatocytes in vitro in simple 2D culture, by converting hepatocytes into induced hepatic progenitor cells (iHPCs), which maintain the capacity of differentiation into hepatocytes. IL6 also supports the establishment of single hepatocyte-derived iHPC clones. The summation of the downstream STAT3, ERK and AKT pathways induces a number of transcription factors which support rapid growth. This physiological and simple way may provide ideas for culturing previously difficult-to-culture cell types and support their future applications.

Suggested Citation

  • Ren Guo & Mengmeng Jiang & Gang Wang & Bing Li & Xiaohui Jia & Yan Ai & Shanshan Chen & Peilan Tang & Aijie Liu & Qianting Yuan & Xin Xie, 2022. "IL6 supports long-term expansion of hepatocytes in vitro," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35167-8
    DOI: 10.1038/s41467-022-35167-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35167-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35167-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew W. Duncan & Matthew H. Taylor & Raymond D. Hickey & Amy E. Hanlon Newell & Michelle L. Lenzi & Susan B. Olson & Milton J. Finegold & Markus Grompe, 2010. "The ploidy conveyor of mature hepatocytes as a source of genetic variation," Nature, Nature, vol. 467(7316), pages 707-710, October.
    2. Pengyu Huang & Zhiying He & Shuyi Ji & Huawang Sun & Dao Xiang & Changcheng Liu & Yiping Hu & Xin Wang & Lijian Hui, 2011. "Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors," Nature, Nature, vol. 475(7356), pages 386-389, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amrita Goldar & Diya Dasgupta, 2023. "Beyond the Stocktake (Part II): Clean Energy Technologies," Indian Council for Research on International Economic Relations (ICRIER) Policy Paper 14, Indian Council for Research on International Economic Relations (ICRIER), New Delhi, India.
    2. Delilah Hendriks & Benedetta Artegiani & Thanasis Margaritis & Iris Zoutendijk & Susana Chuva de Sousa Lopes & Hans Clevers, 2024. "Mapping of mitogen and metabolic sensitivity in organoids defines requirements for human hepatocyte growth," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ross J. Hill & Nazareno Bona & Job Smink & Hannah K. Webb & Alastair Crisp & Juan I. Garaycoechea & Gerry P. Crossan, 2024. "p53 regulates diverse tissue-specific outcomes to endogenous DNA damage in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Emre Bektik & Adrienne Dennis & Prateek Prasanna & Anant Madabhushi & Ji-Dong Fu, 2017. "Single cell qPCR reveals that additional HAND2 and microRNA-1 facilitate the early reprogramming progress of seven-factor-induced human myocytes," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-16, August.
    3. Nana Yan & Hu Feng & Yongsen Sun & Ying Xin & Haihang Zhang & Hongjiang Lu & Jitan Zheng & Chenfei He & Zhenrui Zuo & Tanglong Yuan & Nana Li & Long Xie & Wu Wei & Yidi Sun & Erwei Zuo, 2023. "Cytosine base editors induce off-target mutations and adverse phenotypic effects in transgenic mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35167-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.