IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34860-y.html
   My bibliography  Save this article

A soft and ultrasensitive force sensing diaphragm for probing cardiac organoids instantaneously and wirelessly

Author

Listed:
  • Quanxia Lyu

    (Monash University)

  • Shu Gong

    (Monash University)

  • Jarmon G. Lees

    (St. Vincent’s Institute of Medical Research
    University of Melbourne)

  • Jialiang Yin

    (Monash University)

  • Lim Wei Yap

    (Monash University)

  • Anne M. Kong

    (St. Vincent’s Institute of Medical Research)

  • Qianqian Shi

    (Monash University)

  • Runfang Fu

    (Monash University)

  • Qiang Zhu

    (The Melbourne Centre for Nanofabrication)

  • Ash Dyer

    (The Melbourne Centre for Nanofabrication)

  • Jennifer M. Dyson

    (Biomedicine Discovery Institute
    Monash University)

  • Shiang Y. Lim

    (St. Vincent’s Institute of Medical Research
    University of Melbourne
    Monash University
    National Heart Research Institute Singapore, National Heart Centre)

  • Wenlong Cheng

    (Monash University
    The Melbourne Centre for Nanofabrication)

Abstract

Time-lapse mechanical properties of stem cell derived cardiac organoids are important biological cues for understanding contraction dynamics of human heart tissues, cardiovascular functions and diseases. However, it remains difficult to directly, instantaneously and accurately characterize such mechanical properties in real-time and in situ because cardiac organoids are topologically complex, three-dimensional soft tissues suspended in biological media, which creates a mismatch in mechanics and topology with state-of-the-art force sensors that are typically rigid, planar and bulky. Here, we present a soft resistive force-sensing diaphragm based on ultrasensitive resistive nanocracked platinum film, which can be integrated into an all-soft culture well via an oxygen plasma-enabled bonding process. We show that a reliable organoid-diaphragm contact can be established by an ‘Atomic Force Microscope-like’ engaging process. This allows for instantaneous detection of the organoids’ minute contractile forces and beating patterns during electrical stimulation, resuscitation, drug dosing, tissue culture, and disease modelling.

Suggested Citation

  • Quanxia Lyu & Shu Gong & Jarmon G. Lees & Jialiang Yin & Lim Wei Yap & Anne M. Kong & Qianqian Shi & Runfang Fu & Qiang Zhu & Ash Dyer & Jennifer M. Dyson & Shiang Y. Lim & Wenlong Cheng, 2022. "A soft and ultrasensitive force sensing diaphragm for probing cardiac organoids instantaneously and wirelessly," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34860-y
    DOI: 10.1038/s41467-022-34860-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34860-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34860-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daeshik Kang & Peter V. Pikhitsa & Yong Whan Choi & Chanseok Lee & Sung Soo Shin & Linfeng Piao & Byeonghak Park & Kahp-Yang Suh & Tae-il Kim & Mansoo Choi, 2014. "Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system," Nature, Nature, vol. 516(7530), pages 222-226, December.
    2. Donald M. Bers, 2002. "Cardiac excitation–contraction coupling," Nature, Nature, vol. 415(6868), pages 198-205, January.
    3. Kacey Ronaldson-Bouchard & Stephen P. Ma & Keith Yeager & Timothy Chen & LouJin Song & Dario Sirabella & Kumi Morikawa & Diogo Teles & Masayuki Yazawa & Gordana Vunjak-Novakovic, 2018. "Advanced maturation of human cardiac tissue grown from pluripotent stem cells," Nature, Nature, vol. 556(7700), pages 239-243, April.
    4. Daniel J. Shiwarski & Joshua W. Tashman & Alkiviadis Tsamis & Jaci M. Bliley & Malachi A. Blundon & Edgar Aranda-Michel & Quentin Jallerat & John M. Szymanski & Brooke M. McCartney & Adam W. Feinberg, 2020. "Fibronectin-based nanomechanical biosensors to map 3D surface strains in live cells and tissue," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    5. George Eng & Benjamin W. Lee & Lev Protas & Mark Gagliardi & Kristy Brown & Robert S. Kass & Gordon Keller & Richard B. Robinson & Gordana Vunjak-Novakovic, 2016. "Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes," Nature Communications, Nature, vol. 7(1), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinlei Shi & Xiangqian Fan & Yinbo Zhu & Yang Liu & Peiqi Wu & Renhui Jiang & Bao Wu & Heng-An Wu & He Zheng & Jianbo Wang & Xinyi Ji & Yongsheng Chen & Jiajie Liang, 2022. "Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Shuxing Mei & Haokun Yi & Jun Zhao & Yanting Xu & Lan Shi & Yajie Qin & Yizhou Jiang & Jiajie Guo & Zhuo Li & Limin Wu, 2024. "High-density, highly sensitive sensor array of spiky carbon nanospheres for strain field mapping," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Mao Mao & Xiaoli Qu & Yabo Zhang & Bingsong Gu & Chen Li & Rongzhi Liu & Xiao Li & Hui Zhu & Jiankang He & Dichen Li, 2023. "Leaf-venation-directed cellular alignment for macroscale cardiac constructs with tissue-like functionalities," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Shaomei Lin & Weifeng Yang & Xubin Zhu & Yubin Lan & Kerui Li & Qinghong Zhang & Yaogang Li & Chengyi Hou & Hongzhi Wang, 2024. "Triboelectric micro-flexure-sensitive fiber electronics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Chong Li & Xinxin Liao & Zhi-Ke Peng & Guang Meng & Qingbo He, 2023. "Highly sensitive and broadband meta-mechanoreceptor via mechanical frequency-division multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Haitao Yang & Jiali Li & Xiao Xiao & Jiahao Wang & Yufei Li & Kerui Li & Zhipeng Li & Haochen Yang & Qian Wang & Jie Yang & John S. Ho & Po-Len Yeh & Koen Mouthaan & Xiaonan Wang & Sahil Shah & Po-Yen, 2022. "Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Hongyan Gao & Zhien Wang & Feiyu Yang & Xiaoyu Wang & Siqi Wang & Quan Zhang & Xiaomeng Liu & Yubing Sun & Jing Kong & Jun Yao, 2024. "Graphene-integrated mesh electronics with converged multifunctionality for tracking multimodal excitation-contraction dynamics in cardiac microtissues," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Roman Nikolaienko & Elisa Bovo & Daniel Kahn & Ryan Gracia & Thomas Jamrozik & Aleksey V. Zima, 2023. "Cysteines 1078 and 2991 cross-linking plays a critical role in redox regulation of cardiac ryanodine receptor (RyR)," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Pietro Mesirca & Jean Chemin & Christian Barrère & Eleonora Torre & Laura Gallot & Arnaud Monteil & Isabelle Bidaud & Sylvie Diochot & Michel Lazdunski & Tuck Wah Soong & Stéphanie Barrère-Lemaire & M, 2024. "Selective blockade of Cav1.2 (α1C) versus Cav1.3 (α1D) L-type calcium channels by the black mamba toxin calciseptine," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Mariana A. Branco & Tiago P. Dias & Joaquim M. S. Cabral & Perpetua Pinto-do-Ó & Maria Margarida Diogo, 2022. "Human multilineage pro-epicardium/foregut organoids support the development of an epicardium/myocardium organoid," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    11. Yar, Adem & Karabiber, Abdulkerim & Ozen, Abdurrahman & Ozel, Faruk & Coskun, Sahin, 2020. "Flexible nanofiber based triboelectric nanogenerators with high power conversion," Renewable Energy, Elsevier, vol. 162(C), pages 1428-1437.
    12. Yang Liu & Zijun Xu & Xinyi Ji & Xin Xu & Fei Chen & Xiaosen Pan & Zhiqiang Fu & Yunzhi Chen & Zhengjian Zhang & Hongbin Liu & Bowen Cheng & Jiajie Liang, 2024. "Ag–thiolate interactions to enable an ultrasensitive and stretchable MXene strain sensor with high temporospatial resolution," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Marco C. Miotto & Steven Reiken & Anetta Wronska & Qi Yuan & Haikel Dridi & Yang Liu & Gunnar Weninger & Carl Tchagou & Andrew R. Marks, 2024. "Structural basis for ryanodine receptor type 2 leak in heart failure and arrhythmogenic disorders," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Brett Volmert & Artem Kiselev & Aniwat Juhong & Fei Wang & Ashlin Riggs & Aleksandra Kostina & Colin O’Hern & Priyadharshni Muniyandi & Aaron Wasserman & Amanda Huang & Yonatan Lewis-Israeli & Vishal , 2023. "A patterned human primitive heart organoid model generated by pluripotent stem cell self-organization," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    15. Kyowon Kang & Seongryeol Ye & Chanho Jeong & Jinmo Jeong & Yeong-sinn Ye & Jin-Young Jeong & Yu-Jin Kim & Selin Lim & Tae Hee Kim & Kyung Yeun Kim & Jong Uk Kim & Gwan In Kim & Do Hoon Chun & Kiho Kim, 2024. "Bionic artificial skin with a fully implantable wireless tactile sensory system for wound healing and restoring skin tactile function," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Bas Loo & Simone A. Den & Nuno Araújo-Gomes & Vincent Jong & Rebecca R. Snabel & Maik Schot & José M. Rivera-Arbeláez & Gert Jan C. Veenstra & Robert Passier & Tom Kamperman & Jeroen Leijten, 2023. "Mass production of lumenogenic human embryoid bodies and functional cardiospheres using in-air-generated microcapsules," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Ian Fernandes & Shunsuke Funakoshi & Homaira Hamidzada & Slava Epelman & Gordon Keller, 2023. "Modeling cardiac fibroblast heterogeneity from human pluripotent stem cell-derived epicardial cells," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. Gaspard Pardon & Alison S. Vander Roest & Orlando Chirikian & Foster Birnbaum & Henry Lewis & Erica A. Castillo & Robin Wilson & Aleksandra K. Denisin & Cheavar A. Blair & Colin Holbrook & Kassie Kole, 2024. "Tracking single hiPSC-derived cardiomyocyte contractile function using CONTRAX an efficient pipeline for traction force measurement," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    19. Sungjin Min & Suran Kim & Woo-Sup Sim & Yi Sun Choi & Hyebin Joo & Jae-Hyun Park & Su-Jin Lee & Hyeok Kim & Mi Jeong Lee & Inhea Jeong & Baofang Cui & Sung-Hyun Jo & Jin-Ju Kim & Seok Beom Hong & Yeon, 2024. "Versatile human cardiac tissues engineered with perfusable heart extracellular microenvironment for biomedical applications," Nature Communications, Nature, vol. 15(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34860-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.