IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v556y2018i7700d10.1038_s41586-018-0016-3.html
   My bibliography  Save this article

Advanced maturation of human cardiac tissue grown from pluripotent stem cells

Author

Listed:
  • Kacey Ronaldson-Bouchard

    (Columbia University)

  • Stephen P. Ma

    (Columbia University)

  • Keith Yeager

    (Columbia University)

  • Timothy Chen

    (Columbia University)

  • LouJin Song

    (Columbia University)

  • Dario Sirabella

    (Columbia University)

  • Kumi Morikawa

    (Columbia University)

  • Diogo Teles

    (Columbia University
    University of Minho
    ICVS/3B’s, PT Government Associate Laboratory)

  • Masayuki Yazawa

    (Columbia University)

  • Gordana Vunjak-Novakovic

    (Columbia University
    Columbia University)

Abstract

Cardiac tissues generated from human induced pluripotent stem cells (iPSCs) can serve as platforms for patient-specific studies of physiology and disease1–6. However, the predictive power of these models is presently limited by the immature state of the cells1,2,5,6. Here we show that this fundamental limitation can be overcome if cardiac tissues are formed from early-stage iPSC-derived cardiomyocytes soon after the initiation of spontaneous contractions and are subjected to physical conditioning with increasing intensity over time. After only four weeks of culture, for all iPSC lines studied, such tissues displayed adult-like gene expression profiles, remarkably organized ultrastructure, physiological sarcomere length (2.2 µm) and density of mitochondria (30%), the presence of transverse tubules, oxidative metabolism, a positive force–frequency relationship and functional calcium handling. Electromechanical properties developed more slowly and did not achieve the stage of maturity seen in adult human myocardium. Tissue maturity was necessary for achieving physiological responses to isoproterenol and recapitulating pathological hypertrophy, supporting the utility of this tissue model for studies of cardiac development and disease.

Suggested Citation

  • Kacey Ronaldson-Bouchard & Stephen P. Ma & Keith Yeager & Timothy Chen & LouJin Song & Dario Sirabella & Kumi Morikawa & Diogo Teles & Masayuki Yazawa & Gordana Vunjak-Novakovic, 2018. "Advanced maturation of human cardiac tissue grown from pluripotent stem cells," Nature, Nature, vol. 556(7700), pages 239-243, April.
  • Handle: RePEc:nat:nature:v:556:y:2018:i:7700:d:10.1038_s41586-018-0016-3
    DOI: 10.1038/s41586-018-0016-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0016-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0016-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bas Loo & Simone A. Den & Nuno Araújo-Gomes & Vincent Jong & Rebecca R. Snabel & Maik Schot & José M. Rivera-Arbeláez & Gert Jan C. Veenstra & Robert Passier & Tom Kamperman & Jeroen Leijten, 2023. "Mass production of lumenogenic human embryoid bodies and functional cardiospheres using in-air-generated microcapsules," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Quanxia Lyu & Shu Gong & Jarmon G. Lees & Jialiang Yin & Lim Wei Yap & Anne M. Kong & Qianqian Shi & Runfang Fu & Qiang Zhu & Ash Dyer & Jennifer M. Dyson & Shiang Y. Lim & Wenlong Cheng, 2022. "A soft and ultrasensitive force sensing diaphragm for probing cardiac organoids instantaneously and wirelessly," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Mao Mao & Xiaoli Qu & Yabo Zhang & Bingsong Gu & Chen Li & Rongzhi Liu & Xiao Li & Hui Zhu & Jiankang He & Dichen Li, 2023. "Leaf-venation-directed cellular alignment for macroscale cardiac constructs with tissue-like functionalities," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Gaspard Pardon & Alison S. Vander Roest & Orlando Chirikian & Foster Birnbaum & Henry Lewis & Erica A. Castillo & Robin Wilson & Aleksandra K. Denisin & Cheavar A. Blair & Colin Holbrook & Kassie Kole, 2024. "Tracking single hiPSC-derived cardiomyocyte contractile function using CONTRAX an efficient pipeline for traction force measurement," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Sungjin Min & Suran Kim & Woo-Sup Sim & Yi Sun Choi & Hyebin Joo & Jae-Hyun Park & Su-Jin Lee & Hyeok Kim & Mi Jeong Lee & Inhea Jeong & Baofang Cui & Sung-Hyun Jo & Jin-Ju Kim & Seok Beom Hong & Yeon, 2024. "Versatile human cardiac tissues engineered with perfusable heart extracellular microenvironment for biomedical applications," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    6. Ian Fernandes & Shunsuke Funakoshi & Homaira Hamidzada & Slava Epelman & Gordon Keller, 2023. "Modeling cardiac fibroblast heterogeneity from human pluripotent stem cell-derived epicardial cells," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Mariana A. Branco & Tiago P. Dias & Joaquim M. S. Cabral & Perpetua Pinto-do-Ó & Maria Margarida Diogo, 2022. "Human multilineage pro-epicardium/foregut organoids support the development of an epicardium/myocardium organoid," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:556:y:2018:i:7700:d:10.1038_s41586-018-0016-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.