A Compartmentalized Mathematical Model of the β1-Adrenergic Signaling System in Mouse Ventricular Myocytes
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0089113
Download full text from publisher
References listed on IDEAS
- Donald M. Bers, 2002. "Cardiac excitation–contraction coupling," Nature, Nature, vol. 415(6868), pages 198-205, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Quanxia Lyu & Shu Gong & Jarmon G. Lees & Jialiang Yin & Lim Wei Yap & Anne M. Kong & Qianqian Shi & Runfang Fu & Qiang Zhu & Ash Dyer & Jennifer M. Dyson & Shiang Y. Lim & Wenlong Cheng, 2022. "A soft and ultrasensitive force sensing diaphragm for probing cardiac organoids instantaneously and wirelessly," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Hongyan Gao & Zhien Wang & Feiyu Yang & Xiaoyu Wang & Siqi Wang & Quan Zhang & Xiaomeng Liu & Yubing Sun & Jing Kong & Jun Yao, 2024. "Graphene-integrated mesh electronics with converged multifunctionality for tracking multimodal excitation-contraction dynamics in cardiac microtissues," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Roman Nikolaienko & Elisa Bovo & Daniel Kahn & Ryan Gracia & Thomas Jamrozik & Aleksey V. Zima, 2023. "Cysteines 1078 and 2991 cross-linking plays a critical role in redox regulation of cardiac ryanodine receptor (RyR)," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Pietro Mesirca & Jean Chemin & Christian Barrère & Eleonora Torre & Laura Gallot & Arnaud Monteil & Isabelle Bidaud & Sylvie Diochot & Michel Lazdunski & Tuck Wah Soong & Stéphanie Barrère-Lemaire & M, 2024. "Selective blockade of Cav1.2 (α1C) versus Cav1.3 (α1D) L-type calcium channels by the black mamba toxin calciseptine," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Marco C. Miotto & Steven Reiken & Anetta Wronska & Qi Yuan & Haikel Dridi & Yang Liu & Gunnar Weninger & Carl Tchagou & Andrew R. Marks, 2024. "Structural basis for ryanodine receptor type 2 leak in heart failure and arrhythmogenic disorders," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Brett Volmert & Artem Kiselev & Aniwat Juhong & Fei Wang & Ashlin Riggs & Aleksandra Kostina & Colin O’Hern & Priyadharshni Muniyandi & Aaron Wasserman & Amanda Huang & Yonatan Lewis-Israeli & Vishal , 2023. "A patterned human primitive heart organoid model generated by pluripotent stem cell self-organization," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
- Louis D Weise & Martyn P Nash & Alexander V Panfilov, 2011. "A Discrete Model to Study Reaction-Diffusion-Mechanics Systems," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-13, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0089113. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.