IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34805-5.html
   My bibliography  Save this article

Visual motion perception as online hierarchical inference

Author

Listed:
  • Johannes Bill

    (Harvard Medical School
    Harvard University)

  • Samuel J. Gershman

    (Harvard University
    Harvard University
    MIT)

  • Jan Drugowitsch

    (Harvard Medical School
    Harvard University)

Abstract

Identifying the structure of motion relations in the environment is critical for navigation, tracking, prediction, and pursuit. Yet, little is known about the mental and neural computations that allow the visual system to infer this structure online from a volatile stream of visual information. We propose online hierarchical Bayesian inference as a principled solution for how the brain might solve this complex perceptual task. We derive an online Expectation-Maximization algorithm that explains human percepts qualitatively and quantitatively for a diverse set of stimuli, covering classical psychophysics experiments, ambiguous motion scenes, and illusory motion displays. We thereby identify normative explanations for the origin of human motion structure perception and make testable predictions for future psychophysics experiments. The proposed online hierarchical inference model furthermore affords a neural network implementation which shares properties with motion-sensitive cortical areas and motivates targeted experiments to reveal the neural representations of latent structure.

Suggested Citation

  • Johannes Bill & Samuel J. Gershman & Jan Drugowitsch, 2022. "Visual motion perception as online hierarchical inference," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34805-5
    DOI: 10.1038/s41467-022-34805-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34805-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34805-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lukas N. Groschner & Jonatan G. Malis & Birte Zuidinga & Alexander Borst, 2022. "A biophysical account of multiplication by a single neuron," Nature, Nature, vol. 603(7899), pages 119-123, March.
    2. David C. Bradley & Grace C. Chang & Richard A. Andersen, 1998. "Encoding of three-dimensional structure-from-motion by primate area MT neurons," Nature, Nature, vol. 392(6677), pages 714-717, April.
    3. Olivier Cappé & Eric Moulines, 2009. "On‐line expectation–maximization algorithm for latent data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 593-613, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maire, Florian & Moulines, Eric & Lefebvre, Sidonie, 2017. "Online EM for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 27-47.
    2. Andrew M. Clark & David C. Bradley, 2022. "A neural correlate of perceptual segmentation in macaque middle temporal cortical area," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Shuji Shinohara & Nobuhito Manome & Kouta Suzuki & Ung-il Chung & Tatsuji Takahashi & Hiroshi Okamoto & Yukio Pegio Gunji & Yoshihiro Nakajima & Shunji Mitsuyoshi, 2020. "A new method of Bayesian causal inference in non-stationary environments," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-22, May.
    4. Feifei Yang & Xikui Hu & Guodong Ren & Jun Ma, 2023. "Synchronization and patterns in a memristive network in noisy electric field," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-14, June.
    5. L. Ippel & M. C. Kaptein & J. K. Vermunt, 2019. "Estimating Multilevel Models on Data Streams," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 41-64, March.
    6. Ippel, L. & Kaptein, M.C. & Vermunt, J.K., 2016. "Estimating random-intercept models on data streams," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 169-182.
    7. Burak Gür & Luisa Ramirez & Jacqueline Cornean & Freya Thurn & Sebastian Molina-Obando & Giordano Ramos-Traslosheros & Marion Silies, 2024. "Neural pathways and computations that achieve stable contrast processing tuned to natural scenes," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Donna Henderson & Gerton Lunter, 2020. "Efficient inference in state-space models through adaptive learning in online Monte Carlo expectation maximization," Computational Statistics, Springer, vol. 35(3), pages 1319-1344, September.
    9. Shinohara, Shuji & Okamoto, Hiroshi & Manome, Nobuhito & Gunji, Pegio-Yukio & Nakajima, Yoshihiro & Moriyama, Toru & Chung, Ung-il, 2022. "Simulation of foraging behavior using a decision-making agent with Bayesian and inverse Bayesian inference: Temporal correlations and power laws in displacement patterns," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    10. Xiong Jiang & Yang Jiang & Raja Parasuraman, 2015. "The Visual Priming of Motion-Defined 3D Objects," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-14, December.
    11. Amy L Cochran & Josh M Cisler, 2019. "A flexible and generalizable model of online latent-state learning," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-31, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34805-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.