IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v104y2016icp169-182.html
   My bibliography  Save this article

Estimating random-intercept models on data streams

Author

Listed:
  • Ippel, L.
  • Kaptein, M.C.
  • Vermunt, J.K.

Abstract

Multilevel models are often used for the analysis of grouped data. Grouped data occur for instance when estimating the performance of pupils nested within schools or analyzing multiple observations nested within individuals. Currently, multilevel models are mostly fit to static datasets. However, recent technological advances in the measurement of social phenomena have led to data arriving in a continuous fashion (i.e., data streams). In these situations the data collection is never “finished”. Traditional methods of fitting multilevel models are ill-suited for the analysis of data streams because of their computational complexity. A novel algorithm for estimating random-intercept models is introduced. The Streaming EM Approximation (SEMA) algorithm is a fully-online (row-by-row) method enabling computationally-efficient estimation of random-intercept models. SEMA is tested in two simulation studies, and applied to longitudinal data regarding individuals’ happiness collected continuously using smart phones. SEMA shows competitive statistical performance to existing static approaches, but with large computational benefits. The introduction of this method allows researchers to broaden the scope of their research, by using data streams.

Suggested Citation

  • Ippel, L. & Kaptein, M.C. & Vermunt, J.K., 2016. "Estimating random-intercept models on data streams," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 169-182.
  • Handle: RePEc:eee:csdana:v:104:y:2016:i:c:p:169-182
    DOI: 10.1016/j.csda.2016.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316301451
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steiner, P.M. & Hudec, M., 2007. "Classification of large data sets with mixture models via sufficient EM," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5416-5428, July.
    2. Liu, Z. & Almhana, J. & Choulakian, V. & McGorman, R., 2006. "Online EM algorithm for mixture with application to internet traffic modeling," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1052-1071, February.
    3. William Browne & Harvey Goldstein, 2010. "MCMC Sampling for a Multilevel Model With Nonindependent Residuals Within and Between Cluster Units," Journal of Educational and Behavioral Statistics, , vol. 35(4), pages 453-473, August.
    4. Donald Rubin & Dorothy Thayer, 1982. "EM algorithms for ML factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 47(1), pages 69-76, March.
    5. Berlinet, A.F. & Roland, Ch., 2012. "Acceleration of the EM algorithm: P-EM versus epsilon algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4122-4137.
    6. Olivier Cappé & Eric Moulines, 2009. "On‐line expectation–maximization algorithm for latent data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 593-613, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Ippel & M. C. Kaptein & J. K. Vermunt, 2019. "Estimating Multilevel Models on Data Streams," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 41-64, March.
    2. Ippel, L. & Kaptein, M.C. & Vermunt, J.K., 2019. "Online estimation of individual-level effects using streaming shrinkage factors," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 16-32.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
    2. Maire, Florian & Moulines, Eric & Lefebvre, Sidonie, 2017. "Online EM for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 27-47.
    3. L. Ippel & M. C. Kaptein & J. K. Vermunt, 2019. "Estimating Multilevel Models on Data Streams," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 41-64, March.
    4. Jurgen A. Doornik, 2018. "Accelerated Estimation of Switching Algorithms: The Cointegrated VAR Model and Other Applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(2), pages 283-300, June.
    5. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Kiel Working Papers 1799, Kiel Institute for the World Economy (IfW Kiel).
    6. Chen, Derek H. C. & Gawande, Kishore, 2007. "Underlying dimensions of knowledge assessment : factor analysis of the knowledge assessment methodology data," Policy Research Working Paper Series 4216, The World Bank.
    7. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    8. Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Jun 2024.
    9. Gregory Camilli & Jean-Paul Fox, 2015. "An Aggregate IRT Procedure for Exploratory Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 40(4), pages 377-401, August.
    10. Shuji Shinohara & Nobuhito Manome & Kouta Suzuki & Ung-il Chung & Tatsuji Takahashi & Hiroshi Okamoto & Yukio Pegio Gunji & Yoshihiro Nakajima & Shunji Mitsuyoshi, 2020. "A new method of Bayesian causal inference in non-stationary environments," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-22, May.
    11. Sentana, Enrique, 2004. "Factor representing portfolios in large asset markets," Journal of Econometrics, Elsevier, vol. 119(2), pages 257-289, April.
    12. Fiorentini, Gabriele & Galesi, Alessandro & Sentana, Enrique, 2018. "A spectral EM algorithm for dynamic factor models," Journal of Econometrics, Elsevier, vol. 205(1), pages 249-279.
    13. Bai, Jushan, 2024. "Likelihood approach to dynamic panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 240(1).
    14. Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
    15. Keiji Takai, 2012. "Constrained EM algorithm with projection method," Computational Statistics, Springer, vol. 27(4), pages 701-714, December.
    16. Zhuo Chen & Gregory Connor & Robert A Korajczyk, 2018. "A Performance Comparison of Large-n Factor Estimators," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 8(1), pages 153-182.
    17. Xiaoping Zhou & Dmitry Malioutov & Frank J. Fabozzi & Svetlozar T. Rachev, 2014. "Smooth monotone covariance for elliptical distributions and applications in finance," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1555-1571, September.
    18. Hongwei Xu & John Logan & Susan Short, 2014. "Integrating Space With Place in Health Research: A Multilevel Spatial Investigation Using Child Mortality in 1880 Newark, New Jersey," Demography, Springer;Population Association of America (PAA), vol. 51(3), pages 811-834, June.
    19. Dumas, Bernard & Gabuniya, Tymur & Marston, Richard C., 2022. "Firms’ exposures to geographic risks," Journal of International Money and Finance, Elsevier, vol. 122(C).
    20. Nikolaos Zirogiannis & Yorghos Tripodis, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Papers 2013-1, University of Massachusetts Amherst, Department of Resource Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:104:y:2016:i:c:p:169-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.