IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1008384.html
   My bibliography  Save this article

An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data

Author

Listed:
  • Aaron J Stern
  • Peter R Wilton
  • Rasmus Nielsen

Abstract

Most current methods for detecting natural selection from DNA sequence data are limited in that they are either based on summary statistics or a composite likelihood, and as a consequence, do not make full use of the information available in DNA sequence data. We here present a new importance sampling approach for approximating the full likelihood function for the selection coefficient. Our method CLUES treats the ancestral recombination graph (ARG) as a latent variable that is integrated out using previously published Markov Chain Monte Carlo (MCMC) methods. The method can be used for detecting selection, estimating selection coefficients, testing models of changes in the strength of selection, estimating the time of the start of a selective sweep, and for inferring the allele frequency trajectory of a selected or neutral allele. We perform extensive simulations to evaluate the method and show that it uniformly improves power to detect selection compared to current popular methods such as nSL and SDS, and can provide reliable inferences of allele frequency trajectories under many conditions. We also explore the potential of our method to detect extremely recent changes in the strength of selection. We use the method to infer the past allele frequency trajectory for a lactase persistence SNP (MCM6) in Europeans. We also infer the trajectory of a SNP (EDAR) in Han Chinese, finding evidence that this allele’s age is much older than previously claimed. We also study a set of 11 pigmentation-associated variants. Several genes show evidence of strong selection particularly within the last 5,000 years, including ASIP, KITLG, and TYR. However, selection on OCA2/HERC2 seems to be much older and, in contrast to previous claims, we find no evidence of selection on TYRP1.Author summary: Current methods to study natural selection using modern population genomic data are limited in their power and flexibility. Here, we present a new method to infer natural selection that builds on recent methodological advances in estimating genome-wide genealogies. By using importance sampling we are able to efficiently estimate the likelihood function of the selection coefficient. We show our method improves power to test for selection over competing methods across a diverse range of scenarios, and also accurately infers the selection coefficient. We also demonstrate a novel capability of our model, using it to infer the allele’s frequency over time. We validate these results with a study of a lactase persistence SNP in Europeans, and also study a SNP at EDAR, as well as a set of 11 pigmentation-associated variants.

Suggested Citation

  • Aaron J Stern & Peter R Wilton & Rasmus Nielsen, 2019. "An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data," PLOS Genetics, Public Library of Science, vol. 15(9), pages 1-32, September.
  • Handle: RePEc:plo:pgen00:1008384
    DOI: 10.1371/journal.pgen.1008384
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008384
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1008384&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1008384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael DeGiorgio & Zachary A Szpiech, 2022. "A spatially aware likelihood test to detect sweeps from haplotype distributions," PLOS Genetics, Public Library of Science, vol. 18(4), pages 1-37, April.
    2. Mathilde André & Nicolas Brucato & Georgi Hudjasov & Vasili Pankratov & Danat Yermakovich & Francesco Montinaro & Rita Kreevan & Jason Kariwiga & John Muke & Anne Boland & Jean-François Deleuze & Vinc, 2024. "Positive selection in the genomes of two Papua New Guinean populations at distinct altitude levels," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Andrea Fulgione & Célia Neto & Ahmed F. Elfarargi & Emmanuel Tergemina & Shifa Ansari & Mehmet Göktay & Herculano Dinis & Nina Döring & Pádraic J. Flood & Sofia Rodriguez-Pacheco & Nora Walden & Marcu, 2022. "Parallel reduction in flowering time from de novo mutations enable evolutionary rescue in colonizing lineages," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Vasili Pankratov & Milyausha Yunusbaeva & Sergei Ryakhovsky & Maksym Zarodniuk & Bayazit Yunusbayev, 2022. "Prioritizing autoimmunity risk variants for functional analyses by fine-mapping mutations under natural selection," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1008384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.