IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34339-w.html
   My bibliography  Save this article

XNAzymes targeting the SARS-CoV-2 genome inhibit viral infection

Author

Listed:
  • Pehuén Pereyra Gerber

    (University of Cambridge)

  • Maria J. Donde

    (University of Cambridge)

  • Nicholas J. Matheson

    (University of Cambridge
    University of Cambridge
    NHS Blood and Transplant)

  • Alexander I. Taylor

    (University of Cambridge)

Abstract

The unprecedented emergence and spread of SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, underscores the need for diagnostic and therapeutic technologies that can be rapidly tailored to novel threats. Here, we show that site-specific RNA endonuclease XNAzymes – artificial catalysts composed of single-stranded synthetic xeno-nucleic acid oligonucleotides (in this case 2’-deoxy-2’-fluoro-β-D-arabino nucleic acid) – may be designed, synthesised and screened within days, enabling the discovery of a range of enzymes targeting SARS-CoV-2 ORF1ab, ORF7b, spike- and nucleocapsid-encoding RNA. Three of these are further engineered to self-assemble into a catalytic nanostructure with enhanced biostability. This XNA nanostructure is capable of cleaving genomic SARS-CoV-2 RNA under physiological conditions, and when transfected into cells inhibits infection with authentic SARS-CoV-2 virus by RNA knockdown. These results demonstrate the potential of XNAzymes to provide a platform for the rapid generation of antiviral reagents.

Suggested Citation

  • Pehuén Pereyra Gerber & Maria J. Donde & Nicholas J. Matheson & Alexander I. Taylor, 2022. "XNAzymes targeting the SARS-CoV-2 genome inhibit viral infection," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34339-w
    DOI: 10.1038/s41467-022-34339-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34339-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34339-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Changchang Cao & Zhaokui Cai & Xia Xiao & Jian Rao & Juan Chen & Naijing Hu & Minnan Yang & Xiaorui Xing & Yongle Wang & Manman Li & Bing Zhou & Xiangxi Wang & Jianwei Wang & Yuanchao Xue, 2021. "The architecture of the SARS-CoV-2 RNA genome inside virion," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Alexander I. Taylor & Vitor B. Pinheiro & Matthew J. Smola & Alexey S. Morgunov & Sew Peak-Chew & Christopher Cozens & Kevin M. Weeks & Piet Herdewijn & Philipp Holliger, 2015. "Catalysts from synthetic genetic polymers," Nature, Nature, vol. 518(7539), pages 427-430, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinhua Dou & Chang Liu & Ruoyu Xiong & Hongguang Zhou & Guohua Lu & Liping Jia, 2022. "Empathy and Post-Traumatic Growth among Chinese Community Workers during the COVID-19 Pandemic: Roles of Self-Disclosure and Social Support," IJERPH, MDPI, vol. 19(23), pages 1-12, November.
    2. Nisha Tapryal & Anirban Chakraborty & Kaushik Saha & Azharul Islam & Lang Pan & Koa Hosoki & Ibrahim M. Sayed & Jason M. Duran & Joshua Alcantara & Vanessa Castillo & Courtney Tindle & Altaf H. Sarker, 2023. "The DNA glycosylase NEIL2 is protective during SARS-CoV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Sophie Marianne Korn & Karthikeyan Dhamotharan & Cy M. Jeffries & Andreas Schlundt, 2023. "The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5’-genomic RNA elements," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Leonid Andronov & Mengting Han & Yanyu Zhu & Ashwin Balaji & Anish R. Roy & Andrew E. S. Barentine & Puja Patel & Jaishree Garhyan & Lei S. Qi & W. E. Moerner, 2024. "Nanoscale cellular organization of viral RNA and proteins in SARS-CoV-2 replication organelles," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34339-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.