IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22785-x.html
   My bibliography  Save this article

The architecture of the SARS-CoV-2 RNA genome inside virion

Author

Listed:
  • Changchang Cao

    (Chinese Academy of Sciences)

  • Zhaokui Cai

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xia Xiao

    (Chinese Academy of Medical Sciences & Peking Union Medical College)

  • Jian Rao

    (Chinese Academy of Medical Sciences & Peking Union Medical College)

  • Juan Chen

    (Chinese Academy of Sciences)

  • Naijing Hu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Minnan Yang

    (Chinese Academy of Sciences)

  • Xiaorui Xing

    (Chinese Academy of Sciences)

  • Yongle Wang

    (Chinese Academy of Sciences)

  • Manman Li

    (Henan Normal University)

  • Bing Zhou

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Xiangxi Wang

    (Chinese Academy of Sciences)

  • Jianwei Wang

    (Chinese Academy of Medical Sciences & Peking Union Medical College
    Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Yuanchao Xue

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

SARS-CoV-2 carries the largest single-stranded RNA genome and is the causal pathogen of the ongoing COVID-19 pandemic. How the SARS-CoV-2 RNA genome is folded in the virion remains unknown. To fill the knowledge gap and facilitate structure-based drug development, we develop a virion RNA in situ conformation sequencing technology, named vRIC-seq, for probing viral RNA genome structure unbiasedly. Using vRIC-seq data, we reconstruct the tertiary structure of the SARS-CoV-2 genome and reveal a surprisingly “unentangled globule” conformation. We uncover many long-range duplexes and higher-order junctions, both of which are under purifying selections and contribute to the sequential package of the SARS-CoV-2 genome. Unexpectedly, the D614G and the other two accompanying mutations may remodel duplexes into more stable forms. Lastly, the structure-guided design of potent small interfering RNAs can obliterate the SARS-CoV-2 in Vero cells. Overall, our work provides a framework for studying the genome structure, function, and dynamics of emerging deadly RNA viruses.

Suggested Citation

  • Changchang Cao & Zhaokui Cai & Xia Xiao & Jian Rao & Juan Chen & Naijing Hu & Minnan Yang & Xiaorui Xing & Yongle Wang & Manman Li & Bing Zhou & Xiangxi Wang & Jianwei Wang & Yuanchao Xue, 2021. "The architecture of the SARS-CoV-2 RNA genome inside virion," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22785-x
    DOI: 10.1038/s41467-021-22785-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22785-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22785-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinhua Dou & Chang Liu & Ruoyu Xiong & Hongguang Zhou & Guohua Lu & Liping Jia, 2022. "Empathy and Post-Traumatic Growth among Chinese Community Workers during the COVID-19 Pandemic: Roles of Self-Disclosure and Social Support," IJERPH, MDPI, vol. 19(23), pages 1-12, November.
    2. Sophie Marianne Korn & Karthikeyan Dhamotharan & Cy M. Jeffries & Andreas Schlundt, 2023. "The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5’-genomic RNA elements," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Leonid Andronov & Mengting Han & Yanyu Zhu & Ashwin Balaji & Anish R. Roy & Andrew E. S. Barentine & Puja Patel & Jaishree Garhyan & Lei S. Qi & W. E. Moerner, 2024. "Nanoscale cellular organization of viral RNA and proteins in SARS-CoV-2 replication organelles," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Pehuén Pereyra Gerber & Maria J. Donde & Nicholas J. Matheson & Alexander I. Taylor, 2022. "XNAzymes targeting the SARS-CoV-2 genome inhibit viral infection," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Nisha Tapryal & Anirban Chakraborty & Kaushik Saha & Azharul Islam & Lang Pan & Koa Hosoki & Ibrahim M. Sayed & Jason M. Duran & Joshua Alcantara & Vanessa Castillo & Courtney Tindle & Altaf H. Sarker, 2023. "The DNA glycosylase NEIL2 is protective during SARS-CoV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22785-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.