IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34293-7.html
   My bibliography  Save this article

Vascular endothelium deploys caveolin-1 to regulate oligodendrogenesis after chronic cerebral ischemia in mice

Author

Listed:
  • Ying Zhao

    (Medical School of Nanjing University)

  • Wusheng Zhu

    (Medical School of Nanjing University)

  • Ting Wan

    (Air Force Medical University)

  • Xiaohao Zhang

    (Nanjing Medical University)

  • Yunzi Li

    (Medical School of Nanjing University)

  • Zhenqian Huang

    (Medical School of Nanjing University)

  • Pengfei Xu

    (University of Science and Technology of China)

  • Kangmo Huang

    (Medical School of Nanjing University)

  • Ruidong Ye

    (Medical School of Nanjing University)

  • Yi Xie

    (Medical School of Nanjing University)

  • Xinfeng Liu

    (Medical School of Nanjing University
    University of Science and Technology of China)

Abstract

Oligovascular coupling contributes to white matter vascular homeostasis. However, little is known about the effects of oligovascular interaction on oligodendrocyte precursor cell (OPC) changes in chronic cerebral ischemia. Here, using a mouse of bilateral carotid artery stenosis, we show a gradual accumulation of OPCs on vasculature with impaired oligodendrogenesis. Mechanistically, chronic ischemia induces a substantial loss of endothelial caveolin-1 (Cav-1), leading to vascular secretion of heat shock protein 90α (HSP90α). Endothelial-specific over-expression of Cav-1 or genetic knockdown of vascular HSP90α restores normal vascular-OPC interaction, promotes oligodendrogenesis and attenuates ischemic myelin damage. miR-3074(−1)−3p is identified as a direct inducer of Cav-1 reduction in mice and humans. Endothelial uptake of nanoparticle-antagomir improves myelin damage and cognitive deficits dependent on Cav-1. In summary, our findings demonstrate that vascular abnormality may compromise oligodendrogenesis and myelin regeneration through endothelial Cav-1, which may provide an intercellular mechanism in ischemic demyelination.

Suggested Citation

  • Ying Zhao & Wusheng Zhu & Ting Wan & Xiaohao Zhang & Yunzi Li & Zhenqian Huang & Pengfei Xu & Kangmo Huang & Ruidong Ye & Yi Xie & Xinfeng Liu, 2022. "Vascular endothelium deploys caveolin-1 to regulate oligodendrogenesis after chronic cerebral ischemia in mice," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34293-7
    DOI: 10.1038/s41467-022-34293-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34293-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34293-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brian W. Chow & Vicente Nuñez & Luke Kaplan & Adam J. Granger & Karina Bistrong & Hannah L. Zucker & Payal Kumar & Bernardo L. Sabatini & Chenghua Gu, 2020. "Caveolae in CNS arterioles mediate neurovascular coupling," Nature, Nature, vol. 579(7797), pages 106-110, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karolina Jezierska & Anna Sękowska-Namiotko & Bartłomiej Pala & Danuta Lietz-Kijak & Helena Gronwald & Wojciech Podraza, 2022. "Searching for the Mechanism of Action of Extremely Low Frequency Electromagnetic Field—The Pilot fNIRS Research," IJERPH, MDPI, vol. 19(7), pages 1-9, March.
    2. Brandon R. Munn & Eli J. Müller & Gabriel Wainstein & James M. Shine, 2021. "The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Adam Institoris & Milène Vandal & Govind Peringod & Christy Catalano & Cam Ha Tran & Xinzhu Yu & Frank Visser & Cheryl Breiteneder & Leonardo Molina & Baljit S. Khakh & Minh Dang Nguyen & Roger J. Tho, 2022. "Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34293-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.