IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i7p4012-d781486.html
   My bibliography  Save this article

Searching for the Mechanism of Action of Extremely Low Frequency Electromagnetic Field—The Pilot fNIRS Research

Author

Listed:
  • Karolina Jezierska

    (Department of Medical Physics, Pomeranian Medical University, 71-073 Szczecin, Poland)

  • Anna Sękowska-Namiotko

    (Department of Medical Physics, Pomeranian Medical University, 71-073 Szczecin, Poland)

  • Bartłomiej Pala

    (Department of Medical Physics, Pomeranian Medical University, 71-073 Szczecin, Poland)

  • Danuta Lietz-Kijak

    (Department of Propaedeutic, Physical Diagnostics and Dental Physiotherapy, Pomeranian Medical University, 70-204 Szczecin, Poland)

  • Helena Gronwald

    (Department of Propaedeutic, Physical Diagnostics and Dental Physiotherapy, Pomeranian Medical University, 70-204 Szczecin, Poland)

  • Wojciech Podraza

    (Department of Medical Physics, Pomeranian Medical University, 71-073 Szczecin, Poland)

Abstract

There is an ongoing debate on the benefits of magnetic stimulation in neurological disorders. Objectives: We aimed to evaluate the influence of magnetic stimulation on blood oxygenation of the motor cortex using functional near-infrared spectroscopy (fNIRS). Methods: A total of 16 healthy volunteer participants were subjected to four protocols. In the first two protocols, the participants remained at rest without (and then with) magnetic stimulation. In the next two protocols, motor cortex stimulation was achieved using a finger-tapping task, with and without magnetic stimulation. Changes in blood oxygenation levels within the motor cortex were recorded and analysed. Results: No characteristic changes in the blood oxygenation level-dependent responses were observed in resting participants after magnetic stimulation. No statistically significant difference was observed in the amplitude of the fNIRS signal before and after magnetic stimulation. We observed characteristic blood oxygenation level-dependent responses after the finger-tapping task in the second protocol, but not after magnetic stimulation. Conclusions: Although we did not observe any measurable effect of the magnetic field on the haemodynamic response of the motor cortex, understanding the mechanism(s) of magnetic stimulation may be important. Additional, detailed studies are needed to prove or negate the potential of this medical procedure.

Suggested Citation

  • Karolina Jezierska & Anna Sękowska-Namiotko & Bartłomiej Pala & Danuta Lietz-Kijak & Helena Gronwald & Wojciech Podraza, 2022. "Searching for the Mechanism of Action of Extremely Low Frequency Electromagnetic Field—The Pilot fNIRS Research," IJERPH, MDPI, vol. 19(7), pages 1-9, March.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:4012-:d:781486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/7/4012/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/7/4012/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brian W. Chow & Vicente Nuñez & Luke Kaplan & Adam J. Granger & Karina Bistrong & Hannah L. Zucker & Payal Kumar & Bernardo L. Sabatini & Chenghua Gu, 2020. "Caveolae in CNS arterioles mediate neurovascular coupling," Nature, Nature, vol. 579(7797), pages 106-110, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Zhao & Wusheng Zhu & Ting Wan & Xiaohao Zhang & Yunzi Li & Zhenqian Huang & Pengfei Xu & Kangmo Huang & Ruidong Ye & Yi Xie & Xinfeng Liu, 2022. "Vascular endothelium deploys caveolin-1 to regulate oligodendrogenesis after chronic cerebral ischemia in mice," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Brandon R. Munn & Eli J. Müller & Gabriel Wainstein & James M. Shine, 2021. "The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Adam Institoris & Milène Vandal & Govind Peringod & Christy Catalano & Cam Ha Tran & Xinzhu Yu & Frank Visser & Cheryl Breiteneder & Leonardo Molina & Baljit S. Khakh & Minh Dang Nguyen & Roger J. Tho, 2022. "Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:4012-:d:781486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.