IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34249-x.html
   My bibliography  Save this article

Proteo-genomic characterization of virus-associated liver cancers reveals potential subtypes and therapeutic targets

Author

Listed:
  • Masashi Fujita

    (Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences)

  • Mei-Ju May Chen

    (The University of Texas MD Anderson Cancer Center)

  • Doris Rieko Siwak

    (The University of Texas MD Anderson Cancer Center)

  • Shota Sasagawa

    (Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences)

  • Ayako Oosawa-Tatsuguchi

    (Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences)

  • Koji Arihiro

    (Hiroshima University Hospital)

  • Atsushi Ono

    (Hiroshima University)

  • Ryoichi Miura

    (Hiroshima University)

  • Kazuhiro Maejima

    (Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences)

  • Hiroshi Aikata

    (Hiroshima University)

  • Masaki Ueno

    (Wakayama Medical University)

  • Shinya Hayami

    (Wakayama Medical University)

  • Hiroki Yamaue

    (Wakayama Medical University)

  • Kazuaki Chayama

    (Hiroshima University)

  • Ju-Seog Lee

    (The University of Texas MD Anderson Cancer Center)

  • Yiling Lu

    (The University of Texas MD Anderson Cancer Center)

  • Gordon B. Mills

    (Knight Cancer Institute, Oregon Health & Science University)

  • Han Liang

    (The University of Texas MD Anderson Cancer Center
    The University of Texas MD Anderson Cancer Center)

  • Satoshi S. Nishizuka

    (Iwate Medical University)

  • Hidewaki Nakagawa

    (Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences)

Abstract

Primary liver cancer is a heterogeneous disease in terms of its etiology, histology, and therapeutic response. Concurrent proteomic and genomic characterization of a large set of clinical liver cancer samples can help elucidate the molecular basis of heterogeneity and thus serve as a valuable resource for personalized liver cancer treatment. In this study, we perform proteomic profiling of ~300 proteins on 259 primary liver cancer tissues with reverse-phase protein arrays, mutational analysis using whole genome sequencing and transcriptional analysis with RNA-Seq. Patients are of Japanese ethnic background and mainly HBV or HCV positive, providing insight into this important liver cancer subtype. Unsupervised classification of tumors based on protein expression profiles reveal three proteomic subclasses R1, R2, and R3. The R1 subclass is immunologically hot and demonstrated a good prognosis. R2 contains advanced proliferative tumor with TP53 mutations, high expression of VEGF receptor 2 and the worst prognosis. R3 is enriched with CTNNB1 mutations and elevated mTOR signaling pathway activity. Twenty-two proteins, including CDK1 and CDKN2A, are identified as potential prognostic markers. The proteomic classification presented in this study can help guide therapeutic decision making for liver cancer treatment.

Suggested Citation

  • Masashi Fujita & Mei-Ju May Chen & Doris Rieko Siwak & Shota Sasagawa & Ayako Oosawa-Tatsuguchi & Koji Arihiro & Atsushi Ono & Ryoichi Miura & Kazuhiro Maejima & Hiroshi Aikata & Masaki Ueno & Shinya , 2022. "Proteo-genomic characterization of virus-associated liver cancers reveals potential subtypes and therapeutic targets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34249-x
    DOI: 10.1038/s41467-022-34249-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34249-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34249-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rehan Akbani & Patrick Kwok Shing Ng & Henrica M. J. Werner & Maria Shahmoradgoli & Fan Zhang & Zhenlin Ju & Wenbin Liu & Ji-Yeon Yang & Kosuke Yoshihara & Jun Li & Shiyun Ling & Elena G. Seviour & Pr, 2014. "A pan-cancer proteomic perspective on The Cancer Genome Atlas," Nature Communications, Nature, vol. 5(1), pages 1-15, September.
    2. Mahmoud Ghandi & Franklin W. Huang & Judit Jané-Valbuena & Gregory V. Kryukov & Christopher C. Lo & E. Robert McDonald & Jordi Barretina & Ellen T. Gelfand & Craig M. Bielski & Haoxin Li & Kevin Hu & , 2019. "Next-generation characterization of the Cancer Cell Line Encyclopedia," Nature, Nature, vol. 569(7757), pages 503-508, May.
    3. Yujin Hoshida, 2010. "Nearest Template Prediction: A Single-Sample-Based Flexible Class Prediction with Confidence Assessment," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-8, November.
    4. Henrik J. Johansson & Fabio Socciarelli & Nathaniel M. Vacanti & Mads H. Haugen & Yafeng Zhu & Ioannis Siavelis & Alejandro Fernandez-Woodbridge & Miriam R. Aure & Bengt Sennblad & Mattias Vesterlund , 2019. "Breast cancer quantitative proteome and proteogenomic landscape," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    5. Ying Jiang & Aihua Sun & Yang Zhao & Wantao Ying & Huichuan Sun & Xinrong Yang & Baocai Xing & Wei Sun & Liangliang Ren & Bo Hu & Chaoying Li & Li Zhang & Guangrong Qin & Menghuan Zhang & Ning Chen & , 2019. "Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma," Nature, Nature, vol. 567(7747), pages 257-261, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan Qu & Jinwen Feng & Xiaohui Wu & Lin Bai & Wenhao Xu & Lingli Zhu & Yang Liu & Fujiang Xu & Xuan Zhang & Guojian Yang & Jiacheng Lv & Xiuping Chen & Guo-Hai Shi & Hong-Kai Wang & Da-Long Cao &, 2022. "A proteogenomic analysis of clear cell renal cell carcinoma in a Chinese population," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    2. Sophie A. Herbst & Mattias Vesterlund & Alexander J. Helmboldt & Rozbeh Jafari & Ioannis Siavelis & Matthias Stahl & Eva C. Schitter & Nora Liebers & Berit J. Brinkmann & Felix Czernilofsky & Tobias R, 2022. "Proteogenomics refines the molecular classification of chronic lymphocytic leukemia," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Fengju Chen & Yiqun Zhang & Darshan S. Chandrashekar & Sooryanarayana Varambally & Chad J. Creighton, 2023. "Global impact of somatic structural variation on the cancer proteome," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Isabelle Rose Leo & Luay Aswad & Matthias Stahl & Elena Kunold & Frederik Post & Tom Erkers & Nona Struyf & Georgios Mermelekas & Rubin Narayan Joshi & Eva Gracia-Villacampa & Päivi Östling & Olli P. , 2022. "Integrative multi-omics and drug response profiling of childhood acute lymphoblastic leukemia cell lines," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Zhongqi Fan & Xinchen Zou & Guangyi Wang & Yahui Liu & Yanfang Jiang & Haoyan Wang & Ping Zhang & Feng Wei & Xiaohong Du & Meng Wang & Xiaodong Sun & Bai Ji & Xintong Hu & Liguo Chen & Peiwen Zhou & D, 2024. "A transcriptome based molecular classification scheme for cholangiocarcinoma and subtype-derived prognostic biomarker," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Nadege Gitego & Bogos Agianian & Oi Wei Mak & Vasantha Kumar MV & Emily H. Cheng & Evripidis Gavathiotis, 2023. "Chemical modulation of cytosolic BAX homodimer potentiates BAX activation and apoptosis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Yan Li & Chen Xu & Bing Wang & Fujiang Xu & Fahan Ma & Yuanyuan Qu & Dongxian Jiang & Kai Li & Jinwen Feng & Sha Tian & Xiaohui Wu & Yunzhi Wang & Yang Liu & Zhaoyu Qin & Yalan Liu & Jing Qin & Qi Son, 2022. "Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals potential therapeutic strategies," Nature Communications, Nature, vol. 13(1), pages 1-26, December.
    8. Manish Kumar & David Molkentine & Jessica Molkentine & Kathleen Bridges & Tongxin Xie & Liangpeng Yang & Andrew Hefner & Meng Gao & Reshub Bahri & Annika Dhawan & Mitchell J. Frederick & Sahil Seth & , 2021. "Inhibition of histone acetyltransferase function radiosensitizes CREBBP/EP300 mutants via repression of homologous recombination, potentially targeting a gain of function," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    9. Feng Wang & Yang Xu & Robert Wang & Beatrice Zhang & Noah Smith & Amber Notaro & Samantha Gaerlan & Eric Kutschera & Kathryn E. Kadash-Edmondson & Yi Xing & Lan Lin, 2023. "TEQUILA-seq: a versatile and low-cost method for targeted long-read RNA sequencing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. C. Megan Young & Laurent Beziaud & Pierre Dessen & Angela Madurga Alonso & Albert Santamaria-Martínez & Joerg Huelsken, 2023. "Metabolic dependencies of metastasis-initiating cells in female breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Lishan Fang & Dane Ford-Roshon & Max Russo & Casey O’Brien & Xiaozhe Xiong & Carino Gurjao & Maximilien Grandclaudon & Srivatsan Raghavan & Steven M. Corsello & Steven A. Carr & Namrata D. Udeshi & Ja, 2022. "RNF43 G659fs is an oncogenic colorectal cancer mutation and sensitizes tumor cells to PI3K/mTOR inhibition," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Miquel Anglada-Girotto & Ludovica Ciampi & Sophie Bonnal & Sarah A. Head & Samuel Miravet-Verde & Luis Serrano, 2024. "In silico RNA isoform screening to identify potential cancer driver exons with therapeutic applications," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    13. Shuaifeng Li & Shixun Han & Qi Zhang & Yibing Zhu & Haitao Zhang & Junli Wang & Yang Zhao & Jianhui Zhao & Lin Su & Li Li & Dawang Zhou & Cunqi Ye & Xin-Hua Feng & Tingbo Liang & Bin Zhao, 2022. "FUNDC2 promotes liver tumorigenesis by inhibiting MFN1-mediated mitochondrial fusion," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Charlotte K. Y. Ng & Eva Dazert & Tuyana Boldanova & Mairene Coto-Llerena & Sandro Nuciforo & Caner Ercan & Aleksei Suslov & Marie-Anne Meier & Thomas Bock & Alexander Schmidt & Sylvia Ketterer & Xuey, 2022. "Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Fei Li & Yizhe Wang & Inah Hwang & Ja-Young Jang & Libo Xu & Zhong Deng & Eun Young Yu & Yiming Cai & Caizhi Wu & Zhenbo Han & Yu-Han Huang & Xiangao Huang & Ling Zhang & Jun Yao & Neal F. Lue & Paul , 2023. "Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Yanli Liu & Zhong Wu & Jin Zhou & Dinesh K. A. Ramadurai & Katelyn L. Mortenson & Estrella Aguilera-Jimenez & Yifei Yan & Xiaojun Yang & Alison M. Taylor & Katherine E. Varley & Jason Gertz & Peter S., 2021. "A predominant enhancer co-amplified with the SOX2 oncogene is necessary and sufficient for its expression in squamous cancer," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    17. Wei Hu & Yangjun Wu & Qili Shi & Jingni Wu & Deping Kong & Xiaohua Wu & Xianghuo He & Teng Liu & Shengli Li, 2022. "Systematic characterization of cancer transcriptome at transcript resolution," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Jennifer G. Abelin & Erik J. Bergstrom & Keith D. Rivera & Hannah B. Taylor & Susan Klaeger & Charles Xu & Eva K. Verzani & C. Jackson White & Hilina B. Woldemichael & Maya Virshup & Meagan E. Olive &, 2023. "Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    19. Yiqun Zhang & Fengju Chen & Darshan S. Chandrashekar & Sooryanarayana Varambally & Chad J. Creighton, 2022. "Proteogenomic characterization of 2002 human cancers reveals pan-cancer molecular subtypes and associated pathways," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Kang Wang & Ioannis Zerdes & Henrik J. Johansson & Dhifaf Sarhan & Yizhe Sun & Dimitris C. Kanellis & Emmanouil G. Sifakis & Artur Mezheyeuski & Xingrong Liu & Niklas Loman & Ingrid Hedenfalk & Jonas , 2024. "Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34249-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.