Uncertainty-informed deep learning models enable high-confidence predictions for digital histopathology
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-34025-x
Download full text from publisher
References listed on IDEAS
- Stephen-John Sammut & Mireia Crispin-Ortuzar & Suet-Feung Chin & Elena Provenzano & Helen A. Bardwell & Wenxin Ma & Wei Cope & Ali Dariush & Sarah-Jane Dawson & Jean E. Abraham & Janet Dunn & Louise H, 2022. "Multi-omic machine learning predictor of breast cancer therapy response," Nature, Nature, vol. 601(7894), pages 623-629, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dani Kiyasseh & Aaron Cohen & Chengsheng Jiang & Nicholas Altieri, 2024. "A framework for evaluating clinical artificial intelligence systems without ground-truth annotations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mattia Rediti & Aranzazu Fernandez-Martinez & David Venet & Françoise Rothé & Katherine A. Hoadley & Joel S. Parker & Baljit Singh & Jordan D. Campbell & Karla V. Ballman & David W. Hillman & Eric P. , 2023. "Immunological and clinicopathological features predict HER2-positive breast cancer prognosis in the neoadjuvant NeoALTTO and CALGB 40601 randomized trials," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Khoa A. Tran & Venkateswar Addala & Rebecca L. Johnston & David Lovell & Andrew Bradley & Lambros T. Koufariotis & Scott Wood & Sunny Z. Wu & Daniel Roden & Ghamdan Al-Eryani & Alexander Swarbrick & E, 2023. "Performance of tumour microenvironment deconvolution methods in breast cancer using single-cell simulated bulk mixtures," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Joyce V. Lee & Filomena Housley & Christina Yau & Rachel Nakagawa & Juliane Winkler & Johanna M. Anttila & Pauliina M. Munne & Mariel Savelius & Kathleen E. Houlahan & Daniel Mark & Golzar Hemmati & G, 2022. "Combinatorial immunotherapies overcome MYC-driven immune evasion in triple negative breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34025-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.