IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33969-4.html
   My bibliography  Save this article

Central role of Prominin-1 in lipid rafts during liver regeneration

Author

Listed:
  • Myeong-Suk Bahn

    (Korea University)

  • Dong-Min Yu

    (Korea University)

  • Myoungwoo Lee

    (Korea University)

  • Sung-Je Jo

    (Korea University)

  • Ji-Won Lee

    (Korea University)

  • Ho-Chul Kim

    (Korea University)

  • Hyun Lee

    (Korea University)

  • Hong Lim Kim

    (Integrative Research Support Center, College of Medicine, The Catholic University of Korea)

  • Arum Kim

    (Korea University)

  • Jeong-Ho Hong

    (Korea University)

  • Jun Seok Kim

    (Korea University)

  • Seung-Hoi Koo

    (Korea University)

  • Jae-Seon Lee

    (College of Medicine, Inha University)

  • Young-Gyu Ko

    (Korea University)

Abstract

Prominin-1, a lipid raft protein, is required for maintaining cancer stem cell properties in hepatocarcinoma cell lines, but its physiological roles in the liver have not been well studied. Here, we investigate the role of Prominin-1 in lipid rafts during liver regeneration and show that expression of Prominin-1 increases after 2/3 partial hepatectomy or CCl4 injection. Hepatocyte proliferation and liver regeneration are attenuated in liver-specific Prominin-1 knockout mice compared to wild-type mice. Detailed mechanistic studies reveal that Prominin-1 interacts with the interleukin-6 signal transducer glycoprotein 130, confining it to lipid rafts so that STAT3 signaling by IL-6 is effectively activated. The overexpression of the glycosylphosphatidylinsositol-anchored first extracellular domain of Prominin-1, which is the domain that binds to GP130, rescued the proliferation of hepatocytes and liver regeneration in liver-specific Prominin-1 knockout mice. In summary, Prominin-1 is upregulated in hepatocytes during liver regeneration where it recruits GP130 into lipid rafts and activates the IL6-GP130-STAT3 axis, suggesting that Prominin-1 might be a promising target for therapeutic applications in liver transplantation.

Suggested Citation

  • Myeong-Suk Bahn & Dong-Min Yu & Myoungwoo Lee & Sung-Je Jo & Ji-Won Lee & Ho-Chul Kim & Hyun Lee & Hong Lim Kim & Arum Kim & Jeong-Ho Hong & Jun Seok Kim & Seung-Hoi Koo & Jae-Seon Lee & Young-Gyu Ko, 2022. "Central role of Prominin-1 in lipid rafts during liver regeneration," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33969-4
    DOI: 10.1038/s41467-022-33969-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33969-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33969-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jae-Sung Yi & Jun Sub Park & Young-Mi Ham & Nga Nguyen & Na-Rae Lee & Jin Hong & Bong-Woo Kim & Hyun Lee & Chang-Seok Lee & Byung-Cheon Jeong & Hyun Kyu Song & Hana Cho & Yoon Ki Kim & Jae-Seon Lee & , 2013. "MG53-induced IRS-1 ubiquitination negatively regulates skeletal myogenesis and insulin signalling," Nature Communications, Nature, vol. 4(1), pages 1-12, December.
    2. Shideng Bao & Qiulian Wu & Roger E. McLendon & Yueling Hao & Qing Shi & Anita B. Hjelmeland & Mark W. Dewhirst & Darell D. Bigner & Jeremy N. Rich, 2006. "Glioma stem cells promote radioresistance by preferential activation of the DNA damage response," Nature, Nature, vol. 444(7120), pages 756-760, December.
    3. Wenjuan Pu & Hui Zhang & Xiuzhen Huang & Xueying Tian & Lingjuan He & Yue Wang & Libo Zhang & Qiaozhen Liu & Yan Li & Yi Li & Huan Zhao & Kuo Liu & Jie Lu & Yingqun Zhou & Pengyu Huang & Yu Nie & Yan , 2016. "Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration," Nature Communications, Nature, vol. 7(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuemin Ma & Lei Ding & Zhenhai Li & Chun Zhou, 2023. "Structural basis for TRIM72 oligomerization during membrane damage repair," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Inmaculada Ruz-Maldonado & John T. Gonzalez & Hanming Zhang & Jonathan Sun & Alicia Bort & Inamul Kabir & Richard G. Kibbey & Yajaira Suárez & Daniel M. Greif & Carlos Fernández-Hernando, 2024. "Heterogeneity of hepatocyte dynamics restores liver architecture after chemical, physical or viral damage," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    3. Paweł Wańkowicz & Przemysław Nowacki & Bogusław Machaliński & Dorota Rogińska, 2019. "Biomarkers of Cancer Stem Cells in Glioblastoma Multiforme and Histological Picture of Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 23(3), pages 17365-17368, December.
    4. Jun Liu & Xiaoying Wang & Ann T. Chen & Xingchun Gao & Benjamin T. Himes & Hongyi Zhang & Zeming Chen & Jianhui Wang & Wendy C. Sheu & Gang Deng & Yang Xiao & Pan Zou & Shenqi Zhang & Fuyao Liu & Yong, 2022. "ZNF117 regulates glioblastoma stem cell differentiation towards oligodendroglial lineage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Davide Bernareggi & Qi Xie & Briana C. Prager & Jiyoung Yun & Luisjesus S. Cruz & Timothy V. Pham & William Kim & Xiqing Lee & Michael Coffey & Cristina Zalfa & Pardis Azmoon & Huang Zhu & Pablo Tamay, 2022. "CHMP2A regulates tumor sensitivity to natural killer cell-mediated cytotoxicity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Bianca L. Myers & Kathryn J. Brayer & Luis E. Paez-Beltran & Estrella Villicana & Matthew S. Keith & Hideaki Suzuki & Jessie Newville & Rebekka H. Anderson & Yunee Lo & Conner M. Mertz & Rahul K. Koll, 2024. "Transcription factors ASCL1 and OLIG2 drive glioblastoma initiation and co-regulate tumor cell types and migration," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    7. Crismita Dmello & Junfei Zhao & Li Chen & Andrew Gould & Brandyn Castro & Victor A. Arrieta & Daniel Y. Zhang & Kwang-Soo Kim & Deepak Kanojia & Peng Zhang & Jason Miska & Ragini Yeeravalli & Karl Hab, 2023. "Checkpoint kinase 1/2 inhibition potentiates anti-tumoral immune response and sensitizes gliomas to immune checkpoint blockade," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Qiuhong Zhu & Panpan Liang & Hao Meng & Fangzhen Li & Wei Miao & Cuiying Chu & Wei Wang & Dongxue Li & Cong Chen & Yu Shi & Xingjiang Yu & Yifang Ping & Chaoshi Niu & Hai-bo Wu & Aili Zhang & Xiu-wu B, 2024. "Stabilization of Pin1 by USP34 promotes Ubc9 isomerization and protein sumoylation in glioma stem cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Michelle M. Kameda-Smith & Helen Zhu & En-Ching Luo & Yujin Suk & Agata Xella & Brian Yee & Chirayu Chokshi & Sansi Xing & Frederick Tan & Raymond G. Fox & Ashley A. Adile & David Bakhshinyan & Kevin , 2022. "Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Sree Deepthi Muthukrishnan & Riki Kawaguchi & Pooja Nair & Rachna Prasad & Yue Qin & Maverick Johnson & Qing Wang & Nathan VanderVeer-Harris & Amy Pham & Alvaro G. Alvarado & Michael C. Condro & Fuyin, 2022. "P300 promotes tumor recurrence by regulating radiation-induced conversion of glioma stem cells to vascular-like cells," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Weiwei Lin & Rui Niu & Seong-Min Park & Yan Zou & Sung Soo Kim & Xue Xia & Songge Xing & Qingshan Yang & Xinhong Sun & Zheng Yuan & Shuchang Zhou & Dongya Zhang & Hyung Joon Kwon & Saewhan Park & Chan, 2023. "IGFBP5 is an ROR1 ligand promoting glioblastoma invasion via ROR1/HER2-CREB signaling axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Francesco Antonica & Lucia Santomaso & Davide Pernici & Linda Petrucci & Giuseppe Aiello & Alessandro Cutarelli & Luciano Conti & Alessandro Romanel & Evelina Miele & Toma Tebaldi & Luca Tiberi, 2022. "A slow-cycling/quiescent cells subpopulation is involved in glioma invasiveness," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Faye M. Walker & Lays Martin Sobral & Etienne Danis & Bridget Sanford & Sahiti Donthula & Ilango Balakrishnan & Dong Wang & Angela Pierce & Sana D. Karam & Soudabeh Kargar & Natalie J. Serkova & Nicho, 2024. "Rapid P-TEFb-dependent transcriptional reorganization underpins the glioma adaptive response to radiotherapy," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    14. K. H. Brian Lam & Alberto J. Leon & Weili Hui & Sandy Che-Eun Lee & Ihor Batruch & Kevin Faust & Almos Klekner & Gábor Hutóczki & Marianne Koritzinsky & Maxime Richer & Ugljesa Djuric & Phedias Diaman, 2022. "Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Tatenda Mahlokozera & Bhuvic Patel & Hao Chen & Patrick Desouza & Xuan Qu & Diane D. Mao & Daniel Hafez & Wei Yang & Rukayat Taiwo & Mounica Paturu & Afshin Salehi & Amit D. Gujar & Gavin P. Dunn & Ni, 2021. "Competitive binding of E3 ligases TRIM26 and WWP2 controls SOX2 in glioblastoma," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    16. Min Kyung Lee & Nasim Azizgolshani & Joshua A. Shapiro & Lananh N. Nguyen & Fred W. Kolling & George J. Zanazzi & Hildreth Robert Frost & Brock C. Christensen, 2024. "Identifying tumor type and cell type-specific gene expression alterations in pediatric central nervous system tumors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33969-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.