IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33931-4.html
   My bibliography  Save this article

On the nanoscale structural evolution of solid discharge products in lithium-sulfur batteries using operando scattering

Author

Listed:
  • Christian Prehal

    (ETH Zürich)

  • Jean-Marc Mentlen

    (ETH Zürich)

  • Sara Drvarič Talian

    (National Institute of Chemistry)

  • Alen Vizintin

    (National Institute of Chemistry)

  • Robert Dominko

    (National Institute of Chemistry
    Faculty of Chemistry and Chemical Technology University of Ljubljana)

  • Heinz Amenitsch

    (Graz University of Technology)

  • Lionel Porcar

    (Institut Laue–Langevin)

  • Stefan A. Freunberger

    (Institute of Science and Technology Austria (ISTA))

  • Vanessa Wood

    (ETH Zürich)

Abstract

The inadequate understanding of the mechanisms that reversibly convert molecular sulfur (S) into lithium sulfide (Li2S) via soluble polysulfides (PSs) formation impedes the development of high-performance lithium-sulfur (Li-S) batteries with non-aqueous electrolyte solutions. Here, we use operando small and wide angle X-ray scattering and operando small angle neutron scattering (SANS) measurements to track the nucleation, growth and dissolution of solid deposits from atomic to sub-micron scales during real-time Li-S cell operation. In particular, stochastic modelling based on the SANS data allows quantifying the nanoscale phase evolution during battery cycling. We show that next to nano-crystalline Li2S the deposit comprises solid short-chain PSs particles. The analysis of the experimental data suggests that initially, Li2S2 precipitates from the solution and then is partially converted via solid-state electroreduction to Li2S. We further demonstrate that mass transport, rather than electron transport through a thin passivating film, limits the discharge capacity and rate performance in Li-S cells.

Suggested Citation

  • Christian Prehal & Jean-Marc Mentlen & Sara Drvarič Talian & Alen Vizintin & Robert Dominko & Heinz Amenitsch & Lionel Porcar & Stefan A. Freunberger & Vanessa Wood, 2022. "On the nanoscale structural evolution of solid discharge products in lithium-sulfur batteries using operando scattering," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33931-4
    DOI: 10.1038/s41467-022-33931-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33931-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33931-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Quan Pang & Xiao Liang & Chun Yuen Kwok & Linda F. Nazar, 2016. "Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes," Nature Energy, Nature, vol. 1(9), pages 1-11, September.
    2. Christian Prehal & Harald Fitzek & Gerald Kothleitner & Volker Presser & Bernhard Gollas & Stefan A. Freunberger & Qamar Abbas, 2020. "Author Correction: Persistent and reversible solid iodine electrodeposition in nanoporous carbons," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    3. Christian Prehal & Harald Fitzek & Gerald Kothleitner & Volker Presser & Bernhard Gollas & Stefan A. Freunberger & Qamar Abbas, 2020. "Persistent and reversible solid iodine electrodeposition in nanoporous carbons," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Joanna Conder & Renaud Bouchet & Sigita Trabesinger & Cyril Marino & Lorenz Gubler & Claire Villevieille, 2017. "Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction," Nature Energy, Nature, vol. 2(6), pages 1-7, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuangyan Lang & Seung-Ho Yu & Xinran Feng & Mihail R. Krumov & Héctor D. Abruña, 2022. "Understanding the lithium–sulfur battery redox reactions via operando confocal Raman microscopy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Fu Liu & Wenqing Lu & Jiaqiang Huang & Vanessa Pimenta & Steven Boles & Rezan Demir-Cakan & Jean-Marie Tarascon, 2023. "Detangling electrolyte chemical dynamics in lithium sulfur batteries by operando monitoring with optical resonance combs," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Tang, Kejian & Peng, Xiangqi & Chen, Shuijiao & Song, Fei & Liu, Zhichao & Hu, Jian & Xie, Xiuqiang & Wu, Zhenjun, 2022. "Hierarchically porous carbon derived from delignified biomass for high sulfur-loading room-temperature sodium-sulfur batteries," Renewable Energy, Elsevier, vol. 201(P1), pages 832-840.
    4. Liu, Ying & Lee, Dong Jun & Ahn, Hyo-Jun & Nam, Sang Yong & Cho, Kwon-Koo & Ahn, Jou-Hyeon, 2023. "Waste coffee grounds-derived carbon: Nanoarchitectured pore-structure regulation for sustainable room-temperature sodium–sulfur batteries," Renewable Energy, Elsevier, vol. 212(C), pages 865-874.
    5. Xun Sun & Yue Qiu & Bo Jiang & Zhaoyu Chen & Chenghao Zhao & Hao Zhou & Li Yang & Lishuang Fan & Yu Zhang & Naiqing Zhang, 2023. "Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Chao Ye & Huanyu Jin & Jieqiong Shan & Yan Jiao & Huan Li & Qinfen Gu & Kenneth Davey & Haihui Wang & Shi-Zhang Qiao, 2021. "A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Jiashen Meng & Xufeng Hong & Zhitong Xiao & Linhan Xu & Lujun Zhu & Yongfeng Jia & Fang Liu & Liqiang Mai & Quanquan Pang, 2024. "Rapid-charging aluminium-sulfur batteries operated at 85 °C with a quaternary molten salt electrolyte," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Magdalena Skunik-Nuckowska & Patryk Rączka & Justyna Lubera & Aleksandra A. Mroziewicz & Sławomir Dyjak & Paweł J. Kulesza & Ireneusz Plebankiewicz & Krzysztof A. Bogdanowicz & Agnieszka Iwan, 2021. "Iodide Electrolyte-Based Hybrid Supercapacitor for Compact Photo-Rechargeable Energy Storage System Utilising Silicon Solar Cells," Energies, MDPI, vol. 14(9), pages 1-14, May.
    9. Sang Cheol Kim & Xin Gao & Sheng-Lun Liao & Hance Su & Yuelang Chen & Wenbo Zhang & Louisa C. Greenburg & Jou-An Pan & Xueli Zheng & Yusheng Ye & Mun Sek Kim & Philaphon Sayavong & Aaron Brest & Jian , 2024. "Solvation-property relationship of lithium-sulphur battery electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33931-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.