IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v2y2017i6d10.1038_nenergy.2017.69.html
   My bibliography  Save this article

Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction

Author

Listed:
  • Joanna Conder

    (Paul Scherrer Institute, Electrochemistry Laboratory)

  • Renaud Bouchet

    (Université Grenoble Alpes, Grenoble INP, LEPMI Laboratory)

  • Sigita Trabesinger

    (Paul Scherrer Institute, Electrochemistry Laboratory)

  • Cyril Marino

    (Paul Scherrer Institute, Electrochemistry Laboratory)

  • Lorenz Gubler

    (Paul Scherrer Institute, Electrochemistry Laboratory)

  • Claire Villevieille

    (Paul Scherrer Institute, Electrochemistry Laboratory)

Abstract

In the on going quest towards lithium-battery chemistries beyond the lithium-ion technology, the lithium–sulfur system is emerging as one of the most promising candidates. The major outstanding challenge on the route to commercialization is controlling the so-called polysulfide shuttle, which is responsible for the poor cycling efficiency of the current generation of lithium–sulfur batteries. However, the mechanistic understanding of the reactions underlying the polysulfide shuttle is still incomplete. Here we report the direct observation of lithium polysulfides in a lithium–sulfur cell during operation by means of operando X-ray diffraction. We identify signatures of polysulfides adsorbed on the surface of a glass-fibre separator and monitor their evolution during cycling. Furthermore, we demonstrate that the adsorption of the polysulfides onto SiO2 can be harnessed for buffering the polysulfide redox shuttle. The use of fumed silica as an electrolyte additive therefore significantly improves the specific charge and Coulombic efficiency of lithium–sulfur batteries.

Suggested Citation

  • Joanna Conder & Renaud Bouchet & Sigita Trabesinger & Cyril Marino & Lorenz Gubler & Claire Villevieille, 2017. "Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction," Nature Energy, Nature, vol. 2(6), pages 1-7, June.
  • Handle: RePEc:nat:natene:v:2:y:2017:i:6:d:10.1038_nenergy.2017.69
    DOI: 10.1038/nenergy.2017.69
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nenergy201769
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nenergy.2017.69?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuangyan Lang & Seung-Ho Yu & Xinran Feng & Mihail R. Krumov & Héctor D. Abruña, 2022. "Understanding the lithium–sulfur battery redox reactions via operando confocal Raman microscopy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Christian Prehal & Jean-Marc Mentlen & Sara Drvarič Talian & Alen Vizintin & Robert Dominko & Heinz Amenitsch & Lionel Porcar & Stefan A. Freunberger & Vanessa Wood, 2022. "On the nanoscale structural evolution of solid discharge products in lithium-sulfur batteries using operando scattering," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Fu Liu & Wenqing Lu & Jiaqiang Huang & Vanessa Pimenta & Steven Boles & Rezan Demir-Cakan & Jean-Marie Tarascon, 2023. "Detangling electrolyte chemical dynamics in lithium sulfur batteries by operando monitoring with optical resonance combs," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Sang Cheol Kim & Xin Gao & Sheng-Lun Liao & Hance Su & Yuelang Chen & Wenbo Zhang & Louisa C. Greenburg & Jou-An Pan & Xueli Zheng & Yusheng Ye & Mun Sek Kim & Philaphon Sayavong & Aaron Brest & Jian , 2024. "Solvation-property relationship of lithium-sulphur battery electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:2:y:2017:i:6:d:10.1038_nenergy.2017.69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.