IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33886-6.html
   My bibliography  Save this article

Robust replication initiation from coupled homeostatic mechanisms

Author

Listed:
  • Mareike Berger

    (Biochemical Networks Group, Department of Information in Matter, AMOLF)

  • Pieter Rein ten Wolde

    (Biochemical Networks Group, Department of Information in Matter, AMOLF)

Abstract

The bacterium Escherichia coli initiates replication once per cell cycle at a precise volume per origin and adds an on average constant volume between successive initiation events, independent of the initiation size. Yet, a molecular model that can explain these observations has been lacking. Experiments indicate that E. coli controls replication initiation via titration and activation of the initiator protein DnaA. Here, we study by mathematical modelling how these two mechanisms interact to generate robust replication-initiation cycles. We first show that a mechanism solely based on titration generates stable replication cycles at low growth rates, but inevitably causes premature reinitiation events at higher growth rates. In this regime, the DnaA activation switch becomes essential for stable replication initiation. Conversely, while the activation switch alone yields robust rhythms at high growth rates, titration can strongly enhance the stability of the switch at low growth rates. Our analysis thus predicts that both mechanisms together drive robust replication cycles at all growth rates. In addition, it reveals how an origin-density sensor yields adder correlations.

Suggested Citation

  • Mareike Berger & Pieter Rein ten Wolde, 2022. "Robust replication initiation from coupled homeostatic mechanisms," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33886-6
    DOI: 10.1038/s41467-022-33886-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33886-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33886-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Charl Moolman & Sriram Tiruvadi Krishnan & Jacob W. J. Kerssemakers & Aafke van den Berg & Pawel Tulinski & Martin Depken & Rodrigo Reyes-Lamothe & David J. Sherratt & Nynke H. Dekker, 2014. "Slow unloading leads to DNA-bound β2-sliding clamp accumulation in live Escherichia coli cells," Nature Communications, Nature, vol. 5(1), pages 1-11, December.
    2. Jie Lin & Ariel Amir, 2018. "Homeostasis of protein and mRNA concentrations in growing cells," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qirun Wang & Jie Lin, 2021. "Heterogeneous recruitment abilities to RNA polymerases generate nonlinear scaling of gene expression with cell volume," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Harsh Vashistha & Joanna Jammal-Touma & Kulveer Singh & Yitzhak Rabin & Hanna Salman, 2023. "Bacterial cell-size changes resulting from altering the relative expression of Min proteins," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Agathe Couturier & Chloé Virolle & Kelly Goldlust & Annick Berne-Dedieu & Audrey Reuter & Sophie Nolivos & Yoshiharu Yamaichi & Sarah Bigot & Christian Lesterlin, 2023. "Real-time visualisation of the intracellular dynamics of conjugative plasmid transfer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Renaud Dessalles & Vincent Fromion & Philippe Robert, 2020. "Models of protein production along the cell cycle: An investigation of possible sources of noise," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-25, January.
    5. Kirill Sechkar & Harrison Steel & Giansimone Perrino & Guy-Bart Stan, 2024. "A coarse-grained bacterial cell model for resource-aware analysis and design of synthetic gene circuits," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Chen Zhang & Asha Mary Joseph & Laurent Casini & Justine Collier & Anjana Badrinarayanan & Suliana Manley, 2024. "Chromosome organization shapes replisome dynamics in Caulobacter crescentus," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33886-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.