IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0226016.html
   My bibliography  Save this article

Models of protein production along the cell cycle: An investigation of possible sources of noise

Author

Listed:
  • Renaud Dessalles
  • Vincent Fromion
  • Philippe Robert

Abstract

In this article, we quantitatively study, through stochastic models, the effects of several intracellular phenomena, such as cell volume growth, cell division, gene replication as well as fluctuations of available RNA polymerases and ribosomes. These phenomena are indeed rarely considered in classic models of protein production and no relative quantitative comparison among them has been performed. The parameters for a large and representative class of proteins are determined using experimental measures. The main important and surprising conclusion of our study is to show that despite the significant fluctuations of free RNA polymerases and free ribosomes, they bring little variability to protein production contrary to what has been previously proposed in the literature. After verifying the robustness of this quite counter-intuitive result, we discuss its possible origin from a theoretical view, and interpret it as the result of a mean-field effect.

Suggested Citation

  • Renaud Dessalles & Vincent Fromion & Philippe Robert, 2020. "Models of protein production along the cell cycle: An investigation of possible sources of noise," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-25, January.
  • Handle: RePEc:plo:pone00:0226016
    DOI: 10.1371/journal.pone.0226016
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226016
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0226016&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0226016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Lin & Ariel Amir, 2018. "Homeostasis of protein and mRNA concentrations in growing cells," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mareike Berger & Pieter Rein ten Wolde, 2022. "Robust replication initiation from coupled homeostatic mechanisms," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Qirun Wang & Jie Lin, 2021. "Heterogeneous recruitment abilities to RNA polymerases generate nonlinear scaling of gene expression with cell volume," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Harsh Vashistha & Joanna Jammal-Touma & Kulveer Singh & Yitzhak Rabin & Hanna Salman, 2023. "Bacterial cell-size changes resulting from altering the relative expression of Min proteins," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Kirill Sechkar & Harrison Steel & Giansimone Perrino & Guy-Bart Stan, 2024. "A coarse-grained bacterial cell model for resource-aware analysis and design of synthetic gene circuits," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0226016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.