IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33835-3.html
   My bibliography  Save this article

TRPM8 contributes to sex dimorphism by promoting recovery of normal sensitivity in a mouse model of chronic migraine

Author

Listed:
  • David Alarcón-Alarcón

    (Universidad Miguel Hernández de Elche)

  • David Cabañero

    (Universidad Miguel Hernández de Elche)

  • Jorge Andrés-López

    (Universidad Miguel Hernández de Elche)

  • Magdalena Nikolaeva-Koleva

    (Universidad Miguel Hernández de Elche)

  • Simona Giorgi

    (Universidad Miguel Hernández de Elche)

  • Gregorio Fernández-Ballester

    (Universidad Miguel Hernández de Elche)

  • Asia Fernández-Carvajal

    (Universidad Miguel Hernández de Elche)

  • Antonio Ferrer-Montiel

    (Universidad Miguel Hernández de Elche)

Abstract

TRPA1 and TRPM8 are transient receptor potential channels expressed in trigeminal neurons that are related to pathophysiology in migraine models. Here we use a mouse model of nitroglycerine-induced chronic migraine that displays a sexually dimorphic phenotype, characterized by mechanical hypersensitivity that develops in males and females, and is persistent up to day 20 in female mice, but disappears by day 18 in male mice. TRPA1 is required for development of hypersensitivity in males and females, whereas TRPM8 contributes to the faster recovery from hypersensitivity in males. TRPM8-mediated antinociception effects required the presence of endogenous testosterone in males. Administration of exogenous testosterone to females and orchidectomized males led to recovery from hypersensitivity. Calcium imaging and electrophysiological recordings in in vitro systems confirmed testosterone activity on murine and human TRPM8, independent of androgen receptor expression. Our findings suggest a protective function of TRPM8 in shortening the time frame of hypersensitivity in a mouse model of migraine.

Suggested Citation

  • David Alarcón-Alarcón & David Cabañero & Jorge Andrés-López & Magdalena Nikolaeva-Koleva & Simona Giorgi & Gregorio Fernández-Ballester & Asia Fernández-Carvajal & Antonio Ferrer-Montiel, 2022. "TRPM8 contributes to sex dimorphism by promoting recovery of normal sensitivity in a mouse model of chronic migraine," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33835-3
    DOI: 10.1038/s41467-022-33835-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33835-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33835-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Diana M. Bautista & Jan Siemens & Joshua M. Glazer & Pamela R. Tsuruda & Allan I. Basbaum & Cheryl L. Stucky & Sven-Eric Jordt & David Julius, 2007. "The menthol receptor TRPM8 is the principal detector of environmental cold," Nature, Nature, vol. 448(7150), pages 204-208, July.
    2. Ruozhu Zhao & Xin Chen & Weiwei Ma & Jinyu Zhang & Jie Guo & Xiu Zhong & Jiacheng Yao & Jiahui Sun & Julian Rubinfien & Xuyu Zhou & Jianbin Wang & Hai Qi, 2020. "A GPR174–CCL21 module imparts sexual dimorphism to humoral immunity," Nature, Nature, vol. 577(7790), pages 416-420, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivo B. Regli & Giacomo Strapazzon & Marika Falla & Rosmarie Oberhammer & Hermann Brugger, 2021. "Long-Term Sequelae of Frostbite—A Scoping Review," IJERPH, MDPI, vol. 18(18), pages 1-16, September.
    2. Erick Olivares & Simón Salgado & Jean Paul Maidana & Gaspar Herrera & Matías Campos & Rodolfo Madrid & Patricio Orio, 2015. "TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-17, October.
    3. Jin Liu & Lihong Pan & Wenxuan Hong & Siqin Chen & Peiyuan Bai & Wei Luo & Xiaolei Sun & Furong He & Xinlin Jia & Jialiang Cai & Yingjie Chen & Kai Hu & Zhenju Song & Junbo Ge & Aijun Sun, 2022. "GPR174 knockdown enhances blood flow recovery in hindlimb ischemia mice model by upregulating AREG expression," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Xingxing Zhu & Yue Wu & Yanfeng Li & Xian Zhou & Jens O. Watzlawik & Yin Maggie Chen & Ariel L. Raybuck & Daniel D. Billadeau & Virginia Smith Shapiro & Wolfdieter Springer & Jie Sun & Mark R. Boothby, 2024. "The nutrient-sensing Rag-GTPase complex in B cells controls humoral immunity via TFEB/TFE3-dependent mitochondrial fitness," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. WHO Study Group on Tobacco Product Regulation (TobReg), 2016. "Advisory note: banning menthol in tobacco products," University of California at San Francisco, Center for Tobacco Control Research and Education qt8td7w55n, Center for Tobacco Control Research and Education, UC San Francisco.
    6. Jing Lei & Reiko U. Yoshimoto & Takeshi Matsui & Masayuki Amagai & Mizuho A. Kido & Makoto Tominaga, 2023. "Involvement of skin TRPV3 in temperature detection regulated by TMEM79 in mice," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Chang-Hyung Lee & Young-A Choi & Sung-Jin Heo & Parkyong Song, 2021. "The Effect of Hyperbaric Therapy on Brown Adipose Tissue in Rats," IJERPH, MDPI, vol. 18(17), pages 1-8, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33835-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.