IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33785-w.html
   My bibliography  Save this article

Systems-biology analysis of rheumatoid arthritis fibroblast-like synoviocytes implicates cell line-specific transcription factor function

Author

Listed:
  • Richard I. Ainsworth

    (University of California, San Diego
    University of California, San Diego)

  • Deepa Hammaker

    (University of California, San Diego)

  • Gyrid Nygaard

    (University of California, San Diego
    Haukeland University Hospital)

  • Cecilia Ansalone

    (University of California, San Diego)

  • Camilla Machado

    (University of California, San Diego)

  • Kai Zhang

    (University of California, San Diego)

  • Lina Zheng

    (University of California, San Diego)

  • Lucy Carrillo

    (University of California, San Diego)

  • Andre Wildberg

    (University of California, San Diego)

  • Amanda Kuhs

    (University of California, San Diego)

  • Mattias N. D. Svensson

    (University of California, San Diego
    University of Gothenburg)

  • David L. Boyle

    (University of California, San Diego)

  • Gary S. Firestein

    (University of California, San Diego)

  • Wei Wang

    (University of California, San Diego
    University of California, San Diego
    University of California, San Diego)

Abstract

Rheumatoid arthritis (RA) is an immune-mediated disease affecting diarthrodial joints that remains an unmet medical need despite improved therapy. This limitation likely reflects the diversity of pathogenic pathways in RA, with individual patients demonstrating variable responses to targeted therapies. Better understanding of RA pathogenesis would be aided by a more complete characterization of the disease. To tackle this challenge, we develop and apply a systems biology approach to identify important transcription factors (TFs) in individual RA fibroblast-like synoviocyte (FLS) cell lines by integrating transcriptomic and epigenomic information. Based on the relative importance of the identified TFs, we stratify the RA FLS cell lines into two subtypes with distinct phenotypes and predicted active pathways. We biologically validate these predictions for the top subtype-specific TF RARα and demonstrate differential regulation of TGFβ signaling in the two subtypes. This study characterizes clusters of RA cell lines with distinctive TF biology by integrating transcriptomic and epigenomic data, which could pave the way towards a greater understanding of disease heterogeneity.

Suggested Citation

  • Richard I. Ainsworth & Deepa Hammaker & Gyrid Nygaard & Cecilia Ansalone & Camilla Machado & Kai Zhang & Lina Zheng & Lucy Carrillo & Andre Wildberg & Amanda Kuhs & Mattias N. D. Svensson & David L. B, 2022. "Systems-biology analysis of rheumatoid arthritis fibroblast-like synoviocytes implicates cell line-specific transcription factor function," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33785-w
    DOI: 10.1038/s41467-022-33785-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33785-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33785-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Justin Milner & Clara Toma & Bingfei Yu & Kai Zhang & Kyla Omilusik & Anthony T. Phan & Dapeng Wang & Adam J. Getzler & Toan Nguyen & Shane Crotty & Wei Wang & Matthew E. Pipkin & Ananda W. Goldrat, 2017. "Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours," Nature, Nature, vol. 552(7684), pages 253-257, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandria C. Wells & Kaito A. Hioki & Constance C. Angelou & Adam C. Lynch & Xueting Liang & Daniel J. Ryan & Iris Thesmar & Saule Zhanybekova & Saulius Zuklys & Jacob Ullom & Agnes Cheong & Jesse Ma, 2023. "Let-7 enhances murine anti-tumor CD8 T cell responses by promoting memory and antagonizing terminal differentiation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Guo Li & Saranya Srinivasan & Liwen Wang & Chaoyu Ma & Kai Guo & Wenhao Xiao & Wei Liao & Shruti Mishra & Xin Zhang & Yuanzheng Qiu & Qianjin Lu & Yong Liu & Nu Zhang, 2022. "TGF-β-dependent lymphoid tissue residency of stem-like T cells limits response to tumor vaccine," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Curtis J. Pritzl & Dezzarae Luera & Karin M. Knudson & Michael J. Quaney & Michael J. Calcutt & Mark A. Daniels & Emma Teixeiro, 2023. "IKK2/NFkB signaling controls lung resident CD8+ T cell memory during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Bogang Wu & Xiaowen Zhang & Huai-Chin Chiang & Haihui Pan & Bin Yuan & Payal Mitra & Leilei Qi & Hayk Simonyan & Colin N. Young & Eric Yvon & Yanfen Hu & Nu Zhang & Rong Li, 2022. "RNA polymerase II pausing factor NELF in CD8+ T cells promotes antitumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Carl-Philipp Hackstein & Dana Costigan & Linnea Drexhage & Claire Pearson & Samuel Bullers & Nicholas Ilott & Hossain Delowar Akther & Yisu Gu & Michael E. B. FitzPatrick & Oliver J. Harrison & Lucy C, 2022. "A conserved population of MHC II-restricted, innate-like, commensal-reactive T cells in the gut of humans and mice," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Matteo Villa & David E. Sanin & Petya Apostolova & Mauro Corrado & Agnieszka M. Kabat & Carmine Cristinzio & Annamaria Regina & Gustavo E. Carrizo & Nisha Rana & Michal A. Stanczak & Francesc Baixauli, 2024. "Prostaglandin E2 controls the metabolic adaptation of T cells to the intestinal microenvironment," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Yuan Liao & Lifeng Ma & Qile Guo & Weigao E & Xing Fang & Lei Yang & Fanwei Ruan & Jingjing Wang & Peijing Zhang & Zhongyi Sun & Haide Chen & Zhongliang Lin & Xueyi Wang & Xinru Wang & Huiyu Sun & Xiu, 2022. "Cell landscape of larval and adult Xenopus laevis at single-cell resolution," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33785-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.