IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33754-3.html
   My bibliography  Save this article

Importance of structural hinderance in performance–stability equilibrium of organic photovoltaics

Author

Listed:
  • Baobing Fan

    (City University of Hong Kong
    City University of Hong Kong)

  • Wei Gao

    (City University of Hong Kong
    City University of Hong Kong)

  • Xuanhao Wu

    (Xi’an Jiaotong University)

  • Xinxin Xia

    (The Chinese University of Hong Kong, New Territories)

  • Yue Wu

    (City University of Hong Kong
    City University of Hong Kong)

  • Francis R. Lin

    (City University of Hong Kong
    City University of Hong Kong)

  • Qunping Fan

    (Xi’an Jiaotong University)

  • Xinhui Lu

    (The Chinese University of Hong Kong, New Territories)

  • Wen Jung Li

    (City University of Hong Kong)

  • Wei Ma

    (Xi’an Jiaotong University)

  • Alex K.-Y. Jen

    (City University of Hong Kong
    City University of Hong Kong
    City University of Hong Kong
    University of Washington)

Abstract

Power conversion efficiency and long-term stability are two critical metrics for evaluating the commercial potential of organic photovoltaics. Although the field has witnessed a rapid progress of efficiency towards 19%, the intrinsic trade-off between efficiency and stability is still a challenging issue for bulk-heterojunction cells due to the very delicate crystallization dynamics of organic species. Herein, we developed a class of non-fullerene acceptors with varied side groups as an alternative to aliphatic chains. Among them, the acceptors with conjugated side groups show larger side-group torsion and more twisted backbone, however, they can deliver an efficiency as high as 18.3% in xylene-processed cells, which is among the highest values reported for non-halogenated solvent processed cells. Meanwhile, decent thermal/photo stability is realized for these acceptors containing conjugated side groups. Through the investigation of the geometry–performance–stability relationship, we highlight the importance of side-group steric hinderance of acceptors in achieving combined high-performance, stable, and eco-friendly organic photovoltaics.

Suggested Citation

  • Baobing Fan & Wei Gao & Xuanhao Wu & Xinxin Xia & Yue Wu & Francis R. Lin & Qunping Fan & Xinhui Lu & Wen Jung Li & Wei Ma & Alex K.-Y. Jen, 2022. "Importance of structural hinderance in performance–stability equilibrium of organic photovoltaics," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33754-3
    DOI: 10.1038/s41467-022-33754-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33754-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33754-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haiyang Chen & Rui Zhang & Xiaobin Chen & Guang Zeng & Libor Kobera & Sabina Abbrent & Ben Zhang & Weijie Chen & Guiying Xu & Jiyeon Oh & So-Huei Kang & Shanshan Chen & Changduk Yang & Jiri Brus & Jia, 2021. "A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents," Nature Energy, Nature, vol. 6(11), pages 1045-1053, November.
    2. Jing Liu & Shangshang Chen & Deping Qian & Bhoj Gautam & Guofang Yang & Jingbo Zhao & Jonas Bergqvist & Fengling Zhang & Wei Ma & Harald Ade & Olle Inganäs & Kenan Gundogdu & Feng Gao & He Yan, 2016. "Fast charge separation in a non-fullerene organic solar cell with a small driving force," Nature Energy, Nature, vol. 1(7), pages 1-7, July.
    3. Mark Nikolka & Katharina Broch & John Armitage & David Hanifi & Peer J. Nowack & Deepak Venkateshvaran & Aditya Sadhanala & Jan Saska & Mark Mascal & Seok-Heon Jung & Jin‐Kyun Lee & Iain McCulloch & A, 2019. "High-mobility, trap-free charge transport in conjugated polymer diodes," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Johannes Benduhn & Kristofer Tvingstedt & Fortunato Piersimoni & Sascha Ullbrich & Yeli Fan & Manuel Tropiano & Kathryn A. McGarry & Olaf Zeika & Moritz K. Riede & Christopher J. Douglas & Stephen Bar, 2017. "Intrinsic non-radiative voltage losses in fullerene-based organic solar cells," Nature Energy, Nature, vol. 2(6), pages 1-6, June.
    5. Ning Li & José Darío Perea & Thaer Kassar & Moses Richter & Thomas Heumueller & Gebhard J. Matt & Yi Hou & Nusret S. Güldal & Haiwei Chen & Shi Chen & Stefan Langner & Marvin Berlinghof & Tobias Unruh, 2017. "Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    6. Ming Zhang & Lei Zhu & Guanqing Zhou & Tianyu Hao & Chaoqun Qiu & Zhe Zhao & Qin Hu & Bryon W. Larson & Haiming Zhu & Zaifei Ma & Zheng Tang & Wei Feng & Yongming Zhang & Thomas P. Russell & Feng Liu, 2021. "Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Xinxin Xia & Tsz-Ki Lau & Xuyun Guo & Yuhao Li & Minchao Qin & Kuan Liu & Zeng Chen & Xiaozhi Zhan & Yiqun Xiao & Pok Fung Chan & Heng Liu & Luhang Xu & Guilong Cai & Na Li & Haiming Zhu & Gang Li & Y, 2021. "Uncovering the out-of-plane nanomorphology of organic photovoltaic bulk heterojunction by GTSAXS," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    8. Yongxi Li & Xiaheng Huang & Kan Ding & Hafiz K. M. Sheriff & Long Ye & Haoran Liu & Chang-Zhi Li & Harald Ade & Stephen R. Forrest, 2021. "Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Gao & Ruijie Ma & Top Archie Dela Peña & Cenqi Yan & Hongxiang Li & Mingjie Li & Jiaying Wu & Pei Cheng & Cheng Zhong & Zhanhua Wei & Alex K.-Y. Jen & Gang Li, 2024. "Efficient all-small-molecule organic solar cells processed with non-halogen solvent," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan Jiang & Yixin Li & Feng Liu & Wenxuan Wang & Wenli Su & Wuyue Liu & Songjun Liu & Wenkai Zhang & Jianhui Hou & Shengjie Xu & Yuanping Yi & Xiaozhang Zhu, 2023. "Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Zhen Wang & Yu Guo & Xianzhao Liu & Wenchao Shu & Guangchao Han & Kan Ding & Subhrangsu Mukherjee & Nan Zhang & Hin-Lap Yip & Yuanping Yi & Harald Ade & Philip C. Y. Chow, 2024. "The role of interfacial donor–acceptor percolation in efficient and stable all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Christopher Wöpke & Clemens Göhler & Maria Saladina & Xiaoyan Du & Li Nian & Christopher Greve & Chenhui Zhu & Kaila M. Yallum & Yvonne J. Hofstetter & David Becker-Koch & Ning Li & Thomas Heumüller &, 2022. "Traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Jing Wang & Xudong Jiang & Hongbo Wu & Guitao Feng & Hanyu Wu & Junyu Li & Yuanping Yi & Xunda Feng & Zaifei Ma & Weiwei Li & Koen Vandewal & Zheng Tang, 2021. "Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Yafei Wang & Zhong Zheng & Jianqiu Wang & Pengqing Bi & Zhihao Chen & Junzhen Ren & Cunbin An & Shaoqing Zhang & Jianhui Hou, 2023. "Organic laser power converter for efficient wireless micro power transfer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Yanxun Li & Bo Huang & Xuning Zhang & Jianwei Ding & Yingyu Zhang & Linge Xiao & Boxin Wang & Qian Cheng & Gaosheng Huang & Hong Zhang & Yingguo Yang & Xiaoying Qi & Qiang Zheng & Yuan Zhang & Xiaohui, 2023. "Lifetime over 10000 hours for organic solar cells with Ir/IrOx electron-transporting layer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Hongbo Wu & Hao Lu & Yungui Li & Xin Zhou & Guanqing Zhou & Hailin Pan & Hanyu Wu & Xunda Feng & Feng Liu & Koen Vandewal & Wolfgang Tress & Zaifei Ma & Zhishan Bo & Zheng Tang, 2024. "Decreasing exciton dissociation rates for reduced voltage losses in organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Yuming Wang & Jianwei Yu & Rui Zhang & Jun Yuan & Sandra Hultmark & Catherine E. Johnson & Nathaniel P. Gallop & Bernhard Siegmund & Deping Qian & Huotian Zhang & Yingping Zou & Martijn Kemerink & Art, 2023. "Origins of the open-circuit voltage in ternary organic solar cells and design rules for minimized voltage losses," Nature Energy, Nature, vol. 8(9), pages 978-988, September.
    9. Xuelin Wang & Qianqian Sun & Jinhua Gao & Jian Wang & Chunyu Xu & Xiaoling Ma & Fujun Zhang, 2021. "Recent Progress of Organic Photovoltaics with Efficiency over 17%," Energies, MDPI, vol. 14(14), pages 1-27, July.
    10. Yanan Shi & Yilin Chang & Kun Lu & Zhihao Chen & Jianqi Zhang & Yangjun Yan & Dingding Qiu & Yanan Liu & Muhammad Abdullah Adil & Wei Ma & Xiaotao Hao & Lingyun Zhu & Zhixiang Wei, 2022. "Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Chen Chen & Liang Wang & Weiyi Xia & Ke Qiu & Chuanhang Guo & Zirui Gan & Jing Zhou & Yuandong Sun & Dan Liu & Wei Li & Tao Wang, 2024. "Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Michael B. Price & Paul A. Hume & Aleksandra Ilina & Isabella Wagner & Ronnie R. Tamming & Karen E. Thorn & Wanting Jiao & Alison Goldingay & Patrick J. Conaghan & Girish Lakhwani & Nathaniel J. L. K., 2022. "Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Guilong Cai & Yuhao Li & Yuang Fu & Hua Yang & Le Mei & Zhaoyang Nie & Tengfei Li & Heng Liu & Yubin Ke & Xun-Li Wang & Jean-Luc Brédas & Man-Chung Tang & Xiankai Chen & Xiaowei Zhan & Xinhui Lu, 2024. "Deuteration-enhanced neutron contrasts to probe amorphous domain sizes in organic photovoltaic bulk heterojunction films," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Zhenrong Jia & Qing Ma & Zeng Chen & Lei Meng & Nakul Jain & Indunil Angunawela & Shucheng Qin & Xiaolei Kong & Xiaojun Li & Yang (Michael) Yang & Haiming Zhu & Harald Ade & Feng Gao & Yongfang Li, 2023. "Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Jiehao Fu & Patrick W. K. Fong & Heng Liu & Chieh-Szu Huang & Xinhui Lu & Shirong Lu & Maged Abdelsamie & Tim Kodalle & Carolin M. Sutter-Fella & Yang Yang & Gang Li, 2023. "19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Han Yu & Yan Wang & Xinhui Zou & Junli Yin & Xiaoyu Shi & Yuhao Li & Heng Zhao & Lingyuan Wang & Ho Ming Ng & Bosen Zou & Xinhui Lu & Kam Sing Wong & Wei Ma & Zonglong Zhu & He Yan & Shangshang Chen, 2023. "Improved photovoltaic performance and robustness of all-polymer solar cells enabled by a polyfullerene guest acceptor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Yunhao Cai & Qian Li & Guanyu Lu & Hwa Sook Ryu & Yun Li & Hui Jin & Zhihao Chen & Zheng Tang & Guanghao Lu & Xiaotao Hao & Han Young Woo & Chunfeng Zhang & Yanming Sun, 2022. "Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Huazhe Liang & Xingqi Bi & Hongbin Chen & Tengfei He & Yi Lin & Yunxin Zhang & Kangqiao Ma & Wanying Feng & Zaifei Ma & Guankui Long & Chenxi Li & Bin Kan & Hongtao Zhang & Oleg A. Rakitin & Xiangjian, 2023. "A rare case of brominated small molecule acceptors for high-efficiency organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Hongmei Zhuo & Xiaojun Li & Jinyuan Zhang & Can Zhu & Haozhe He & Kan Ding & Jing Li & Lei Meng & Harald Ade & Yongfang Li, 2023. "Precise synthesis and photovoltaic properties of giant molecule acceptors," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Sri Harish Kumar Paleti & Sandra Hultmark & Jianhua Han & Yuanfan Wen & Han Xu & Si Chen & Emmy Järsvall & Ishita Jalan & Diego Rosas Villalva & Anirudh Sharma & Jafar. I. Khan & Ellen Moons & Ruipeng, 2023. "Hexanary blends: a strategy towards thermally stable organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33754-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.