IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v1y2016i7d10.1038_nenergy.2016.89.html
   My bibliography  Save this article

Fast charge separation in a non-fullerene organic solar cell with a small driving force

Author

Listed:
  • Jing Liu

    (The Hong Kong University of Science and Technology)

  • Shangshang Chen

    (The Hong Kong University of Science and Technology)

  • Deping Qian

    (Linköping University)

  • Bhoj Gautam

    (North Carolina State University)

  • Guofang Yang

    (The Hong Kong University of Science and Technology
    State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University)

  • Jingbo Zhao

    (The Hong Kong University of Science and Technology)

  • Jonas Bergqvist

    (Linköping University)

  • Fengling Zhang

    (Linköping University)

  • Wei Ma

    (State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University)

  • Harald Ade

    (North Carolina State University)

  • Olle Inganäs

    (Linköping University)

  • Kenan Gundogdu

    (North Carolina State University)

  • Feng Gao

    (Linköping University)

  • He Yan

    (The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology-Shenzhen Research Institute No. 9, Yuexing 1st Road)

Abstract

Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driving force, defined as the offset between the bandgap (Egap) of the donor/acceptor materials and the energy of the charge transfer (CT) state (ECT), which is typically greater than 0.3 eV. The large driving force causes a relatively large voltage loss that hinders performance. Here, we report non-fullerene OSCs that exhibit ultrafast and efficient charge separation despite a negligible driving force, as ECT is nearly identical to Egap. Moreover, the small driving force is found to have minimal detrimental effects on charge transfer dynamics of the OSCs. We demonstrate a non-fullerene OSC with 9.5% efficiency and nearly 90% internal quantum efficiency despite a low voltage loss of 0.61 V. This creates a path towards highly efficient OSCs with a low voltage loss.

Suggested Citation

  • Jing Liu & Shangshang Chen & Deping Qian & Bhoj Gautam & Guofang Yang & Jingbo Zhao & Jonas Bergqvist & Fengling Zhang & Wei Ma & Harald Ade & Olle Inganäs & Kenan Gundogdu & Feng Gao & He Yan, 2016. "Fast charge separation in a non-fullerene organic solar cell with a small driving force," Nature Energy, Nature, vol. 1(7), pages 1-7, July.
  • Handle: RePEc:nat:natene:v:1:y:2016:i:7:d:10.1038_nenergy.2016.89
    DOI: 10.1038/nenergy.2016.89
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nenergy201689
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nenergy.2016.89?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanyuan Jiang & Yixin Li & Feng Liu & Wenxuan Wang & Wenli Su & Wuyue Liu & Songjun Liu & Wenkai Zhang & Jianhui Hou & Shengjie Xu & Yuanping Yi & Xiaozhang Zhu, 2023. "Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Marios Maimaris & Allan J. Pettipher & Mohammed Azzouzi & Daniel J. Walke & Xijia Zheng & Andrei Gorodetsky & Yifan Dong & Pabitra Shakya Tuladhar & Helder Crespo & Jenny Nelson & John W. G. Tisch & A, 2022. "Sub-10-fs observation of bound exciton formation in organic optoelectronic devices," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Xian’e Li & Qilun Zhang & Jianwei Yu & Ye Xu & Rui Zhang & Chuanfei Wang & Huotian Zhang & Simone Fabiano & Xianjie Liu & Jianhui Hou & Feng Gao & Mats Fahlman, 2022. "Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Jiehao Fu & Qianguang Yang & Peihao Huang & Sein Chung & Kilwon Cho & Zhipeng Kan & Heng Liu & Xinhui Lu & Yongwen Lang & Hanjian Lai & Feng He & Patrick W. K. Fong & Shirong Lu & Yang Yang & Zeyun Xi, 2024. "Rational molecular and device design enables organic solar cells approaching 20% efficiency," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Jinfeng Huang & Tianyi Chen & Le Mei & Mengting Wang & Yuxuan Zhu & Jiting Cui & Yanni Ouyang & Youwen Pan & Zhaozhao Bi & Wei Ma & Zaifei Ma & Haiming Zhu & Chunfeng Zhang & Xian-Kai Chen & Hongzheng, 2024. "On the role of asymmetric molecular geometry in high-performance organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Yuming Wang & Jianwei Yu & Rui Zhang & Jun Yuan & Sandra Hultmark & Catherine E. Johnson & Nathaniel P. Gallop & Bernhard Siegmund & Deping Qian & Huotian Zhang & Yingping Zou & Martijn Kemerink & Art, 2023. "Origins of the open-circuit voltage in ternary organic solar cells and design rules for minimized voltage losses," Nature Energy, Nature, vol. 8(9), pages 978-988, September.
    7. Baobing Fan & Wei Gao & Xuanhao Wu & Xinxin Xia & Yue Wu & Francis R. Lin & Qunping Fan & Xinhui Lu & Wen Jung Li & Wei Ma & Alex K.-Y. Jen, 2022. "Importance of structural hinderance in performance–stability equilibrium of organic photovoltaics," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:1:y:2016:i:7:d:10.1038_nenergy.2016.89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.