IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v529y2016i7587d10.1038_nature16176.html
   My bibliography  Save this article

Measurement noise 100 times lower than the quantum-projection limit using entangled atoms

Author

Listed:
  • Onur Hosten

    (Stanford University)

  • Nils J. Engelsen

    (Stanford University)

  • Rajiv Krishnakumar

    (Stanford University)

  • Mark A. Kasevich

    (Stanford University)

Abstract

Quantum entanglement is thought to offer great promise for improving measurement precision; now a spin-squeezing implementation with cold atoms offers levels of sensitivity unavailable with any competing conventional method, sensing microwave induced rotations a factor of 70 beyond the standard quantum limit.

Suggested Citation

  • Onur Hosten & Nils J. Engelsen & Rajiv Krishnakumar & Mark A. Kasevich, 2016. "Measurement noise 100 times lower than the quantum-projection limit using entangled atoms," Nature, Nature, vol. 529(7587), pages 505-508, January.
  • Handle: RePEc:nat:nature:v:529:y:2016:i:7587:d:10.1038_nature16176
    DOI: 10.1038/nature16176
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature16176
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature16176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Jia & Valeriy Novikov & Tulio Brito Brasil & Emil Zeuthen & Jörg Helge Müller & Eugene S. Polzik, 2023. "Acoustic frequency atomic spin oscillator in the quantum regime," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yink Loong Len & Tuvia Gefen & Alex Retzker & Jan Kołodyński, 2022. "Quantum metrology with imperfect measurements," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:529:y:2016:i:7587:d:10.1038_nature16176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.