IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33377-8.html
   My bibliography  Save this article

A local tumor microenvironment acquired super-enhancer induces an oncogenic driver in colorectal carcinoma

Author

Listed:
  • Royce W. Zhou

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Jia Xu

    (Icahn School of Medicine at Mount Sinai)

  • Tiphaine C. Martin

    (Icahn School of Medicine at Mount Sinai)

  • Alexis L. Zachem

    (Icahn School of Medicine at Mount Sinai)

  • John He

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Sait Ozturk

    (Icahn School of Medicine at Mount Sinai)

  • Deniz Demircioglu

    (Icahn School of Medicine at Mount Sinai)

  • Ankita Bansal

    (Icahn School of Medicine at Mount Sinai)

  • Andrew P. Trotta

    (Icahn School of Medicine at Mount Sinai)

  • Bruno Giotti

    (Icahn School of Medicine at Mount Sinai)

  • Berkley Gryder

    (Case Western Reserve University)

  • Yao Shen

    (Icahn School of Medicine at Mount Sinai)

  • Xuewei Wu

    (Icahn School of Medicine at Mount Sinai)

  • Saul Carcamo

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Kaitlyn Bosch

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Benjamin Hopkins

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Alexander Tsankov

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Randolph Steinhagen

    (Icahn School of Medicine at Mount Sinai)

  • Drew R. Jones

    (NYU Langone Health)

  • John Asara

    (Beth Israel Deaconess Medical Center)

  • Jerry E. Chipuk

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Rachel Brody

    (Icahn School of Medicine at Mount Sinai)

  • Steven Itzkowitz

    (Icahn School of Medicine at Mount Sinai)

  • Iok In Christine Chio

    (Columbia University Medical Center)

  • Dan Hasson

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Emily Bernstein

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Ramon E. Parsons

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

Abstract

Tumors exhibit enhancer reprogramming compared to normal tissue. The etiology is largely attributed to cell-intrinsic genomic alterations. Here, using freshly resected primary CRC tumors and patient-matched adjacent normal colon, we find divergent epigenetic landscapes between CRC tumors and cell lines. Intriguingly, this phenomenon extends to highly recurrent aberrant super-enhancers gained in CRC over normal. We find one such super-enhancer activated in epithelial cancer cells due to surrounding inflammation in the tumor microenvironment. We restore this super-enhancer and its expressed gene, PDZK1IP1, following treatment with cytokines or xenotransplantation into nude mice, thus demonstrating cell-extrinsic etiology. We demonstrate mechanistically that PDZK1IP1 enhances the reductive capacity CRC cancer cells via the pentose phosphate pathway. We show this activation enables efficient growth under oxidative conditions, challenging the previous notion that PDZK1IP1 acts as a tumor suppressor in CRC. Collectively, these observations highlight the significance of epigenomic profiling on primary specimens.

Suggested Citation

  • Royce W. Zhou & Jia Xu & Tiphaine C. Martin & Alexis L. Zachem & John He & Sait Ozturk & Deniz Demircioglu & Ankita Bansal & Andrew P. Trotta & Bruno Giotti & Berkley Gryder & Yao Shen & Xuewei Wu & S, 2022. "A local tumor microenvironment acquired super-enhancer induces an oncogenic driver in colorectal carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33377-8
    DOI: 10.1038/s41467-022-33377-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33377-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33377-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Lachmann & Denis Torre & Alexandra B. Keenan & Kathleen M. Jagodnik & Hoyjin J. Lee & Lily Wang & Moshe C. Silverstein & Avi Ma’ayan, 2018. "Massive mining of publicly available RNA-seq data from human and mouse," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Andrea J. Cohen & Alina Saiakhova & Olivia Corradin & Jennifer M. Luppino & Katreya Lovrenert & Cynthia F. Bartels & James J. Morrow & Stephen C. Mack & Gursimran Dhillon & Lydia Beard & Lois Myeroff , 2017. "Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
    3. Stephen C. Mack & Kristian W. Pajtler & Lukas Chavez & Konstantin Okonechnikov & Kelsey C. Bertrand & Xiuxing Wang & Serap Erkek & Alexander Federation & Anne Song & Christine Lee & Xin Wang & Laura M, 2018. "Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling," Nature, Nature, vol. 553(7686), pages 101-105, January.
    4. Charles Y. Lin & Serap Erkek & Yiai Tong & Linlin Yin & Alexander J. Federation & Marc Zapatka & Parthiv Haldipur & Daisuke Kawauchi & Thomas Risch & Hans-Jörg Warnatz & Barbara C. Worst & Bensheng Ju, 2016. "Active medulloblastoma enhancers reveal subgroup-specific cellular origins," Nature, Nature, vol. 530(7588), pages 57-62, February.
    5. Giulia Chiara & Federica Gervasoni & Michaela Fakiola & Chiara Godano & Claudia D’Oria & Luca Azzolin & Raoul Jean Pierre Bonnal & Giulia Moreni & Lorenzo Drufuca & Grazisa Rossetti & Valeria Ranzani , 2021. "Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by YAP/TAZ," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholas Sim & Jean-Michel Carter & Kamalakshi Deka & Benita Kiat Tee Tan & Yirong Sim & Suet-Mien Tan & Yinghui Li, 2024. "TWEAK/Fn14 signalling driven super-enhancer reprogramming promotes pro-metastatic metabolic rewiring in triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan P. Ling & Alexei M. Bygrave & Clayton P. Santiago & Rogger P. Carmen-Orozco & Vickie T. Trinh & Minzhong Yu & Yini Li & Ying Liu & Kyra D. Bowden & Leighton H. Duncan & Jeong Han & Kamil Tane, 2022. "Cell-specific regulation of gene expression using splicing-dependent frameshifting," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Kenneth A. Wilson & Sudipta Bar & Eric B. Dammer & Enrique M. Carrera & Brian A. Hodge & Tyler A. U. Hilsabeck & Joanna Bons & George W. Brownridge & Jennifer N. Beck & Jacob Rose & Melia Granath-Pane, 2024. "OXR1 maintains the retromer to delay brain aging under dietary restriction," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Deblina Banerjee & Sukriti Bagchi & Zhihui Liu & Hsien-Chao Chou & Man Xu & Ming Sun & Sara Aloisi & Zalman Vaksman & Sharon J. Diskin & Mark Zimmerman & Javed Khan & Berkley Gryder & Carol J. Thiele, 2024. "Lineage specific transcription factor waves reprogram neuroblastoma from self-renewal to differentiation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Maura Galimberti & Maria R. Nucera & Vittoria D. Bocchi & Paola Conforti & Elena Vezzoli & Matteo Cereda & Camilla Maffezzini & Raffaele Iennaco & Andrea Scolz & Andrea Falqui & Chiara Cordiglieri & M, 2024. "Huntington’s disease cellular phenotypes are rescued non-cell autonomously by healthy cells in mosaic telencephalic organoids," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Hao Chen & Frederick J. King & Bin Zhou & Yu Wang & Carter J. Canedy & Joel Hayashi & Yang Zhong & Max W. Chang & Lars Pache & Julian L. Wong & Yong Jia & John Joslin & Tao Jiang & Christopher Benner , 2024. "Drug target prediction through deep learning functional representation of gene signatures," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Gerard Llimos & Vincent Gardeux & Ute Koch & Judith F. Kribelbauer & Antonina Hafner & Daniel Alpern & Joern Pezoldt & Maria Litovchenko & Julie Russeil & Riccardo Dainese & Riccardo Moia & Abdurraouf, 2022. "A leukemia-protective germline variant mediates chromatin module formation via transcription factor nucleation," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    7. Ines Sturmlechner & Chance C. Sine & Karthik B. Jeganathan & Cheng Zhang & Raul O. Fierro Velasco & Darren J. Baker & Hu Li & Jan M. Deursen, 2022. "Senescent cells limit p53 activity via multiple mechanisms to remain viable," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Rachael G. Aubin & Emma C. Troisi & Javier Montelongo & Adam N. Alghalith & Maclean P. Nasrallah & Mariarita Santi & Pablo G. Camara, 2022. "Pro-inflammatory cytokines mediate the epithelial-to-mesenchymal-like transition of pediatric posterior fossa ependymoma," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Konstantin Okonechnikov & Aylin Camgöz & Owen Chapman & Sameena Wani & Donglim Esther Park & Jens-Martin Hübner & Abhijit Chakraborty & Meghana Pagadala & Rosalind Bump & Sahaana Chandran & Katerina K, 2023. "3D genome mapping identifies subgroup-specific chromosome conformations and tumor-dependency genes in ependymoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Milton Pividori & Sumei Lu & Binglan Li & Chun Su & Matthew E. Johnson & Wei-Qi Wei & Qiping Feng & Bahram Namjou & Krzysztof Kiryluk & Iftikhar J. Kullo & Yuan Luo & Blair D. Sullivan & Benjamin F. V, 2023. "Projecting genetic associations through gene expression patterns highlights disease etiology and drug mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Isabel Tundidor & Marta Seijo-Vila & Sandra Blasco-Benito & María Rubert-Hernández & Sandra Adámez & Clara Andradas & Sara Manzano & Isabel Álvarez-López & Cristina Sarasqueta & María Villa-Morales & , 2023. "Identification of fatty acid amide hydrolase as a metastasis suppressor in breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Lucas A. Mavromatis & Daniel B. Rosoff & Andrew S. Bell & Jeesun Jung & Josephin Wagner & Falk W. Lohoff, 2023. "Multi-omic underpinnings of epigenetic aging and human longevity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Daewon Lee & Eunju Yoon & Su Jin Ham & Kunwoo Lee & Hansaem Jang & Daihn Woo & Da Hyun Lee & Sehyeon Kim & Sekyu Choi & Jongkyeong Chung, 2024. "Diabetic sensory neuropathy and insulin resistance are induced by loss of UCHL1 in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    14. Juliane Tschuck & Lea Theilacker & Ina Rothenaigner & Stefanie A. I. Weiß & Banu Akdogan & Van Thanh Lam & Constanze Müller & Roman Graf & Stefanie Brandner & Christian Pütz & Tamara Rieder & Philippe, 2023. "Farnesoid X receptor activation by bile acids suppresses lipid peroxidation and ferroptosis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Yaqiong Li & Zhipeng Niu & Jichao Yang & Xuke Yang & Yukun Chen & Yingying Li & Xiaohan Liang & Jingwen Zhang & Fuqiang Fan & Ping Wu & Chao Peng & Bang Shen, 2023. "Rapid metabolic reprogramming mediated by the AMP-activated protein kinase during the lytic cycle of Toxoplasma gondii," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Nikolai Schleussner & Pierre Cauchy & Vedran Franke & Maciej Giefing & Oriol Fornes & Naveen Vankadari & Salam A. Assi & Mariantonia Costanza & Marc A. Weniger & Altuna Akalin & Ioannis Anagnostopoulo, 2023. "Transcriptional reprogramming by mutated IRF4 in lymphoma," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Luigi Mazzeo & Soumitra Ghosh & Emery Di Cicco & Jovan Isma & Daniele Tavernari & Anastasia Samarkina & Paola Ostano & Markus K. Youssef & Christian Simon & G. Paolo Dotto, 2024. "ANKRD1 is a mesenchymal-specific driver of cancer-associated fibroblast activation bridging androgen receptor loss to AP-1 activation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    18. Nicholas Sim & Jean-Michel Carter & Kamalakshi Deka & Benita Kiat Tee Tan & Yirong Sim & Suet-Mien Tan & Yinghui Li, 2024. "TWEAK/Fn14 signalling driven super-enhancer reprogramming promotes pro-metastatic metabolic rewiring in triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    19. Qing-Lan Li & Xiang Lin & Ya-Li Yu & Lin Chen & Qi-Xin Hu & Meng Chen & Nan Cao & Chen Zhao & Chen-Yu Wang & Cheng-Wei Huang & Lian-Yun Li & Mei Ye & Min Wu, 2021. "Genome-wide profiling in colorectal cancer identifies PHF19 and TBC1D16 as oncogenic super enhancers," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    20. Xiaochu Tong & Ning Qu & Xiangtai Kong & Shengkun Ni & Jingyi Zhou & Kun Wang & Lehan Zhang & Yiming Wen & Jiangshan Shi & Sulin Zhang & Xutong Li & Mingyue Zheng, 2024. "Deep representation learning of chemical-induced transcriptional profile for phenotype-based drug discovery," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33377-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.