IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33370-1.html
   My bibliography  Save this article

Nocturnal plant respiration is under strong non-temperature control

Author

Listed:
  • Dan Bruhn

    (Aalborg University)

  • Freya Newman

    (University of Exeter)

  • Mathilda Hancock

    (University of Exeter)

  • Peter Povlsen

    (Aalborg University)

  • Martijn Slot

    (Smithsonian Tropical Research Institute)

  • Stephen Sitch

    (University of Exeter)

  • John Drake

    (SUNY College of Environmental Science and Forestry)

  • Graham P. Weedon

    (Met Office)

  • Douglas B. Clark

    (UK Centre for Ecology & Hydrology)

  • Majken Pagter

    (Aalborg University)

  • Richard J. Ellis

    (UK Centre for Ecology & Hydrology)

  • Mark G. Tjoelker

    (Western Sydney University)

  • Kelly M. Andersen

    (Nanyang Technological Institute)

  • Zorayda Restrepo Correa

    (Grupo Servicios ecosistemicos y cambio climático (SECC), Corporación COL-TREE)

  • Patrick C. McGuire

    (University of Reading, Department of Meteorology and National Centre for Atmospheric Science)

  • Lina M. Mercado

    (University of Exeter
    UK Centre for Ecology & Hydrology)

Abstract

Most biological rates depend on the rate of respiration. Temperature variation is typically considered the main driver of daily plant respiration rates, assuming a constant daily respiration rate at a set temperature. Here, we show empirical data from 31 species from temperate and tropical biomes to demonstrate that the rate of plant respiration at a constant temperature decreases monotonically with time through the night, on average by 25% after 8 h of darkness. Temperature controls less than half of the total nocturnal variation in respiration. A new universal formulation is developed to model and understand nocturnal plant respiration, combining the nocturnal decrease in the rate of plant respiration at constant temperature with the decrease in plant respiration according to the temperature sensitivity. Application of the new formulation shows a global reduction of 4.5 −6 % in plant respiration and an increase of 7-10% in net primary production for the present-day.

Suggested Citation

  • Dan Bruhn & Freya Newman & Mathilda Hancock & Peter Povlsen & Martijn Slot & Stephen Sitch & John Drake & Graham P. Weedon & Douglas B. Clark & Majken Pagter & Richard J. Ellis & Mark G. Tjoelker & Ke, 2022. "Nocturnal plant respiration is under strong non-temperature control," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33370-1
    DOI: 10.1038/s41467-022-33370-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33370-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33370-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Campioli & Y. Malhi & S. Vicca & S. Luyssaert & D. Papale & J. Peñuelas & M. Reichstein & M. Migliavacca & M. A. Arain & I. A. Janssens, 2016. "Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests," Nature Communications, Nature, vol. 7(1), pages 1-12, December.
    2. Chris Huntingford & Owen K. Atkin & Alberto Martinez-de la Torre & Lina M. Mercado & Mary A. Heskel & Anna B. Harper & Keith J. Bloomfield & Odhran S. O’Sullivan & Peter B. Reich & Kirk R. Wythers & E, 2017. "Implications of improved representations of plant respiration in a changing climate," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaofei Yan & Qinxin Guo & Yajie Zhao & Yandong Zhao & Jianhui Lin, 2021. "Evaluation of Five Gas Diffusion Models Used in the Gradient Method for Estimating CO 2 Flux with Changing Soil Properties," Sustainability, MDPI, vol. 13(19), pages 1-13, September.
    2. Pengyuan Wang & Shaoqiang Wang & Bin Chen & Muhammad Amir & Lei Wang & Jinghua Chen & Li Ma & Xiaobo Wang & Yuanyuan Liu & Kai Zhu, 2022. "Light and Water Conditions Co-Regulated Stomata and Leaf Relative Uptake Rate (LRU) during Photosynthesis and COS Assimilation: A Meta-Analysis," Sustainability, MDPI, vol. 14(5), pages 1-26, February.
    3. Jong Kyu Lee & Myeong Ja Kwak & Sang Hee Park & Han Dong Kim & Yea Ji Lim & Su Gyeong Jeong & Yun Soo Choi & Su Young Woo, 2021. "Ozone Response of Leaf Physiological and Stomatal Characteristics in Brassica juncea L. at Supraoptimal Temperatures," Land, MDPI, vol. 10(4), pages 1-22, April.
    4. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Jeon, Jong-Min & Kumar, Gopalakrishnan & Yang, Yung-Hun, 2019. "Carbon dioxide capture and bioenergy production using biological system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 143-158.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33370-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.