IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33265-1.html
   My bibliography  Save this article

Climate change may outpace current wheat breeding yield improvements in North America

Author

Listed:
  • Tianyi Zhang

    (Chinese Academy of Sciences
    Nanjing University of Information Science & Technology)

  • Yong He

    (Chinese Academy of Agricultural Sciences)

  • Ron DePauw

    (Advancing Wheat Technologies)

  • Zhenong Jin

    (University of Minnesota)

  • David Garvin

    (Formerly USDA-ARS Plant Science Research Unit)

  • Xu Yue

    (Nanjing University of Information Science and Technology)

  • Weston Anderson

    (The International Research Institute for Climate and Society
    University of Maryland)

  • Tao Li

    (DNDC Applications, Research and Training)

  • Xin Dong

    (Chinese Academy of Sciences)

  • Tao Zhang

    (Chinese Academy of Sciences)

  • Xiaoguang Yang

    (China Agricultural University)

Abstract

Variety adaptation to future climate for wheat is important but lacks comprehensive understanding. Here, we evaluate genetic advancement under current and future climate using a dataset of wheat breeding nurseries in North America during 1960-2018. Results show that yields declined by 3.6% per 1 °C warming for advanced winter wheat breeding lines, compared with −5.5% for the check variety, indicating a superior climate-resilience. However, advanced spring wheat breeding lines showed a 7.5% yield reduction per 1 °C warming, which is more sensitive than a 7.1% reduction for the check variety, indicating climate resilience is not improved and may even decline for spring wheat. Under future climate of SSP scenarios, yields of winter and spring wheat exhibit declining trends even with advanced breeding lines, suggesting future climate warming could outpace the yield gains from current breeding progress. Our study highlights that the adaptation progress following the current wheat breeding strategies is challenging.

Suggested Citation

  • Tianyi Zhang & Yong He & Ron DePauw & Zhenong Jin & David Garvin & Xu Yue & Weston Anderson & Tao Li & Xin Dong & Tao Zhang & Xiaoguang Yang, 2022. "Climate change may outpace current wheat breeding yield improvements in North America," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33265-1
    DOI: 10.1038/s41467-022-33265-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33265-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33265-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bing Liu & Senthold Asseng & Christoph Müller & Frank Ewert & Joshua Elliott & David B. Lobell & Pierre Martre & Alex C. Ruane & Daniel Wallach & James W. Jones & Cynthia Rosenzweig & Pramod K. Aggarw, 2016. "Similar estimates of temperature impacts on global wheat yield by three independent methods," Nature Climate Change, Nature, vol. 6(12), pages 1130-1136, December.
    2. Mistry, Malcolm N. & Wing, Ian Sue & De Cian, Enrica, 2017. "Simulated vs. Empirical Weather Responsiveness of Crop Yields: U.S. Evidence and Implications for the Agricultural Impacts of Climate Change," EIA: Climate Change: Economic Impacts and Adaptation 263480, Fondazione Eni Enrico Mattei (FEEM).
    3. David B. Lobell & Adam Sibley & J. Ivan Ortiz-Monasterio, 2012. "Extreme heat effects on wheat senescence in India," Nature Climate Change, Nature, vol. 2(3), pages 186-189, March.
    4. S. Asseng & F. Ewert & C. Rosenzweig & J. W. Jones & J. L. Hatfield & A. C. Ruane & K. J. Boote & P. J. Thorburn & R. P. Rötter & D. Cammarano & N. Brisson & B. Basso & P. Martre & P. K. Aggarwal & C., 2013. "Uncertainty in simulating wheat yields under climate change," Nature Climate Change, Nature, vol. 3(9), pages 827-832, September.
    5. A. J. Challinor & A.-K. Koehler & J. Ramirez-Villegas & S. Whitfield & B. Das, 2016. "Current warming will reduce yields unless maize breeding and seed systems adapt immediately," Nature Climate Change, Nature, vol. 6(10), pages 954-958, October.
    6. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    7. Xuhui Wang & Chuang Zhao & Christoph Müller & Chenzhi Wang & Philippe Ciais & Ivan Janssens & Josep Peñuelas & Senthold Asseng & Tao Li & Joshua Elliott & Yao Huang & Laurent Li & Shilong Piao, 2020. "Emergent constraint on crop yield response to warmer temperature from field experiments," Nature Sustainability, Nature, vol. 3(11), pages 908-916, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markhof,Yannick Valentin & Ponzini,Giulia & Wollburg,Philip Randolph, 2022. "Measuring Disaster Crop Production Losses Using Survey Microdata : Evidence from Sub-Saharan Africa," Policy Research Working Paper Series 9968, The World Bank.
    2. Hao, Shirui & Ryu, Dongryeol & Western, Andrew & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2021. "Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis," Agricultural Systems, Elsevier, vol. 194(C).
    3. Qiao, Shengchao & Harrison, Sandy P. & Prentice, I. Colin & Wang, Han, 2023. "Optimality-based modelling of wheat sowing dates globally," Agricultural Systems, Elsevier, vol. 206(C).
    4. Komarek, Adam M. & Thierfelder, Christian & Steward, Peter R., 2021. "Conservation agriculture improves adaptive capacity of cropping systems to climate stress in Malawi," Agricultural Systems, Elsevier, vol. 190(C).
    5. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    6. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    7. Jiang, Tengcong & Wang, Bin & Duan, Xiaoning & Liu, De Li & He, Jianqiang & He, Liang & Jin, Ning & Feng, Hao & Yu, Qiang, 2023. "Prioritizing agronomic practices and uncertainty assessment under climate change for winter wheat in the loess plateau, China," Agricultural Systems, Elsevier, vol. 212(C).
    8. Rory G. J. Fitzpatrick & Douglas J. Parker & John H. Marsham & David P. Rowell & Lawrence S. Jackson & Declan Finney & Chetan Deva & Simon Tucker & Rachael Stratton, 2020. "How a typical West African day in the future-climate compares with current-climate conditions in a convection-permitting and parameterised convection climate model," Climatic Change, Springer, vol. 163(1), pages 267-296, November.
    9. Birthal, Pratap S. & Hazrana, Jaweriah & Negi, Digvijay S. & Pandey, Ghanshyam, 2021. "Benefits of irrigation against heat stress in agriculture: Evidence from wheat crop in India," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Louise Beveridge & Stephen Whitfield & Andy Challinor, 2018. "Crop modelling: towards locally relevant and climate-informed adaptation," Climatic Change, Springer, vol. 147(3), pages 475-489, April.
    11. Uris Baldos & Thomas Hertel & Frances Moore, 2018. "The Biophysical and Economic Geographies of Global Climate Impacts on Agriculture," NBER Working Papers 24779, National Bureau of Economic Research, Inc.
    12. Bao, Yawen & Hoogenboom, Gerrit & McClendon, Ron & Vellidis, George, 2017. "A comparison of the performance of the CSM-CERES-Maize and EPIC models using maize variety trial data," Agricultural Systems, Elsevier, vol. 150(C), pages 109-119.
    13. Junjun Cao & Guoyong Leng & Peng Yang & Qingbo Zhou & Wenbin Wu, 2022. "Variability in Crop Response to Spatiotemporal Variation in Climate in China, 1980–2014," Land, MDPI, vol. 11(8), pages 1-13, July.
    14. Lewis, Janet M & Reynolds, Matthew, 2022. "The Future of Climate Resilience in Wheat," SocArXiv hvd4e, Center for Open Science.
    15. Li, Na & Yao, Ning & Li, Yi & Chen, Junqing & Liu, Deli & Biswas, Asim & Li, Linchao & Wang, Tianxue & Chen, Xinguo, 2021. "A meta-analysis of the possible impact of climate change on global cotton yield based on crop simulation approaches," Agricultural Systems, Elsevier, vol. 193(C).
    16. Oscar J. Cacho & Jonathan Moss & Philip K. Thornton & Mario Herrero & Ben Henderson & Benjamin L. Bodirsky & Florian Humpenöder & Alexander Popp & Leslie Lipper, 2020. "The value of climate-resilient seeds for smallholder adaptation in sub-Saharan Africa," Climatic Change, Springer, vol. 162(3), pages 1213-1229, October.
    17. Guiomar Carranza-Gallego & Gloria I. Guzmán & Roberto Garcia-Ruíz & Manuel González de Molina & Eduardo Aguilera, 2019. "Addressing the Role of Landraces in the Sustainability of Mediterranean Agroecosystems," Sustainability, MDPI, vol. 11(21), pages 1-16, October.
    18. A. N. Hristov & A. T. Degaetano & C. A. Rotz & E. Hoberg & R. H. Skinner & T. Felix & H. Li & P. H. Patterson & G. Roth & M. Hall & T. L. Ott & L. H. Baumgard & W. Staniar & R. M. Hulet & C. J. Dell &, 2018. "Climate change effects on livestock in the Northeast US and strategies for adaptation," Climatic Change, Springer, vol. 146(1), pages 33-45, January.
    19. Namra Ghaffar & Bushra Noreen & Maryam Muhammad Ali & Amna Ali, 2021. "Rice Yield Estimation in Sawat Region Incorporating The Local Physio-Climatic Parameters," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(2), pages 46-50, June.
    20. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33265-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.