IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33128-9.html
   My bibliography  Save this article

Technology readiness levels for machine learning systems

Author

Listed:
  • Alexander Lavin

    (Pasteur Labs & ISI
    NASA Frontier Development Lab)

  • Ciarán M. Gilligan-Lee

    (Spotify
    University College London)

  • Alessya Visnjic

    (WhyLabs)

  • Siddha Ganju

    (NASA Frontier Development Lab
    Nvidia)

  • Dava Newman

    (Massachusetts Institute of Technology)

  • Sujoy Ganguly

    (Unity AI)

  • Danny Lange

    (Unity AI)

  • Atílím Güneş Baydin

    (University of Oxford)

  • Amit Sharma

    (Microsoft Research)

  • Adam Gibson

    (Konduit)

  • Stephan Zheng

    (Salesforce Research)

  • Eric P. Xing

    (Petuum
    Carnegie Mellon University)

  • Chris Mattmann

    (NASA Jet Propulsion Lab)

  • James Parr

    (NASA Frontier Development Lab)

  • Yarin Gal

    (Alan Turing Institute)

Abstract

The development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end. Lack of diligence can lead to technical debt, scope creep and misaligned objectives, model misuse and failures, and expensive consequences. Engineering systems, on the other hand, follow well-defined processes and testing standards to streamline development for high-quality, reliable results. The extreme is spacecraft systems, with mission critical measures and robustness throughout the process. Drawing on experience in both spacecraft engineering and machine learning (research through product across domain areas), we’ve developed a proven systems engineering approach for machine learning and artificial intelligence: the Machine Learning Technology Readiness Levels framework defines a principled process to ensure robust, reliable, and responsible systems while being streamlined for machine learning workflows, including key distinctions from traditional software engineering, and a lingua franca for people across teams and organizations to work collaboratively on machine learning and artificial intelligence technologies. Here we describe the framework and elucidate with use-cases from physics research to computer vision apps to medical diagnostics.

Suggested Citation

  • Alexander Lavin & Ciarán M. Gilligan-Lee & Alessya Visnjic & Siddha Ganju & Dava Newman & Sujoy Ganguly & Danny Lange & Atílím Güneş Baydin & Amit Sharma & Adam Gibson & Stephan Zheng & Eric P. Xing &, 2022. "Technology readiness levels for machine learning systems," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33128-9
    DOI: 10.1038/s41467-022-33128-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33128-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33128-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Jonathan G. Richens & Ciarán M. Lee & Saurabh Johri, 2020. "Publisher Correction: Improving the accuracy of medical diagnosis with causal machine learning," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    3. Jonathan G. Richens & Ciarán M. Lee & Saurabh Johri, 2020. "Improving the accuracy of medical diagnosis with causal machine learning," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Dean Eckles & Eytan Bakshy, 2021. "Bias and High-Dimensional Adjustment in Observational Studies of Peer Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 507-517, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seou Choi & Yannick Salamin & Charles Roques-Carmes & Rumen Dangovski & Di Luo & Zhuo Chen & Michael Horodynski & Jamison Sloan & Shiekh Zia Uddin & Marin Soljačić, 2024. "Photonic probabilistic machine learning using quantum vacuum noise," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Katerina Rigana & Ernst C. Wit & Samantha Cook, 2024. "Navigating Market Turbulence: Insights from Causal Network Contagion Value at Risk," Papers 2402.06032, arXiv.org.
    3. Shilin Zheng & Mengdan Li, 2022. "Does aggressive tweeting by the government help to control the COVID‐19 outbreak? Evidence from China," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 30(4), pages 691-713, October.
    4. Bangfeng Wang & Yiwei Li & Mengfan Zhou & Yulong Han & Mingyu Zhang & Zhaolong Gao & Zetai Liu & Peng Chen & Wei Du & Xingcai Zhang & Xiaojun Feng & Bi-Feng Liu, 2023. "Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Forney Andrew & Mueller Scott, 2022. "Causal inference in AI education: A primer," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 141-173, January.
    6. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    8. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    10. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    11. Khanh Duong, 2024. "Is meritocracy just? New evidence from Boolean analysis and Machine learning," Journal of Computational Social Science, Springer, vol. 7(2), pages 1795-1821, October.
    12. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    13. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    14. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    15. Kirill Borusyak & Peter Hull & Xavier Jaravel, 2023. "Design-Based Identification with Formula Instruments: A Review," NBER Working Papers 31393, National Bureau of Economic Research, Inc.
    16. Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "The mind in the machine: Estimating mind perception's effect on user satisfaction with voice-based conversational agents," Journal of Business Research, Elsevier, vol. 175(C).
    17. Sallin, Aurelién, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Economics Working Paper Series 2109, University of St. Gallen, School of Economics and Political Science.
    18. Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020. "Optimal data collection for randomized control trials," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
    19. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    20. Soren Blomquist & Anil Kumar & Che-Yuan Liang & Whitney K. Newey, 2022. "Nonlinear Budget Set Regressions for the Random Utility Model," Working Papers 2219, Federal Reserve Bank of Dallas.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33128-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.