IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33081-7.html
   My bibliography  Save this article

Microgel reinforced zwitterionic hydrogel coating for blood-contacting biomedical devices

Author

Listed:
  • Mengmeng Yao

    (Tianjin University
    Tianjin University)

  • Zhijian Wei

    (Tianjin Medical University General Hospital
    Shandong University
    Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University)

  • Junjin Li

    (Tianjin Medical University General Hospital
    Shandong University
    Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University)

  • Zhicheng Guo

    (Tianjin University)

  • Zhuojun Yan

    (Tianjin University)

  • Xia Sun

    (Tianjin University)

  • Qingyu Yu

    (Tianjin University)

  • Xiaojun Wu

    (Tianjin University)

  • Chaojie Yu

    (Tianjin University)

  • Fanglian Yao

    (Tianjin University
    Tianjin University
    East China Jiaotong University)

  • Shiqing Feng

    (Tianjin Medical University General Hospital
    Shandong University
    Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University)

  • Hong Zhang

    (Tianjin University
    Tianjin University)

  • Junjie Li

    (Tianjin University
    Tianjin University)

Abstract

Zwitterionic hydrogels exhibit eminent nonfouling and hemocompatibility. Several key challenges hinder their application as coating materials for blood-contacting biomedical devices, including weak mechanical strength and low adhesion to the substrate. Here, we report a poly(carboxybetaine) microgel reinforced poly(sulfobetaine) (pCBM/pSB) pure zwitterionic hydrogel with excellent mechanical robustness and anti-swelling properties. The pCBM/pSB hydrogel coating was bonded to the PVC substrate via the entanglement network between the pSB and PVC chain. Moreover, the pCBM/pSB hydrogel coating can maintain favorable stability even after 21 d PBS shearing, 0.5 h strong water flushing, 1000 underwater bends, and 100 sandpaper abrasions. Notably, the pCBM/pSB hydrogel coated PVC tubing can not only mitigate the foreign body response but also prevent thrombus formation ex vivo in rats and rabbits blood circulation without anticoagulants. This work provides new insights to guide the design of pure zwitterionic hydrogel coatings for biomedical devices.

Suggested Citation

  • Mengmeng Yao & Zhijian Wei & Junjin Li & Zhicheng Guo & Zhuojun Yan & Xia Sun & Qingyu Yu & Xiaojun Wu & Chaojie Yu & Fanglian Yao & Shiqing Feng & Hong Zhang & Junjie Li, 2022. "Microgel reinforced zwitterionic hydrogel coating for blood-contacting biomedical devices," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33081-7
    DOI: 10.1038/s41467-022-33081-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33081-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33081-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hyunwoo Yuk & Teng Zhang & German Alberto Parada & Xinyue Liu & Xuanhe Zhao, 2016. "Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures," Nature Communications, Nature, vol. 7(1), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxuan Yang & Xiaodan Zhao & Shuang Wang & Yanfeng Zhang & Aiming Yang & Yilong Cheng & Xuesi Chen, 2023. "Ultra-durable cell-free bioactive hydrogel with fast shape memory and on-demand drug release for cartilage regeneration," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Zhao Pan & Qi-Qi Fu & Mo-Han Wang & Huai-Ling Gao & Liang Dong & Pu Zhou & Dong-Dong Cheng & Ying Chen & Duo-Hong Zou & Jia-Cai He & Xue Feng & Shu-Hong Yu, 2023. "Designing nanohesives for rapid, universal, and robust hydrogel adhesion," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Lin Liu & Huan Yu & Lei Wang & Dongfang Zhou & Xiaozheng Duan & Xu Zhang & Jinghua Yin & Shifang Luan & Hengchong Shi, 2024. "Heparin-network-mediated long-lasting coatings on intravascular catheters for adaptive antithrombosis and antibacterial infection," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao Pan & Qi-Qi Fu & Mo-Han Wang & Huai-Ling Gao & Liang Dong & Pu Zhou & Dong-Dong Cheng & Ying Chen & Duo-Hong Zou & Jia-Cai He & Xue Feng & Shu-Hong Yu, 2023. "Designing nanohesives for rapid, universal, and robust hydrogel adhesion," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Dace Gao & Gurunathan Thangavel & Junwoo Lee & Jian Lv & Yi Li & Jing-Hao Ciou & Jiaqing Xiong & Taiho Park & Pooi See Lee, 2023. "A supramolecular gel-elastomer system for soft iontronic adhesives," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Camilo Duque Londono & Seth F. Cones & Jue Deng & Jingjing Wu & Hyunwoo Yuk & David E. Guza & T. Aran Mooney & Xuanhe Zhao, 2024. "Bioadhesive interface for marine sensors on diverse soft fragile species," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Yuan Tian & Zhihao Wang & Shuiyan Cao & Dong Liu & Yukun Zhang & Chong Chen & Zhiwen Jiang & Jun Ma & Yunlong Wang, 2024. "Connective tissue inspired elastomer-based hydrogel for artificial skin via radiation-indued penetrating polymerization," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Ming Bai & Yanru Chen & Liyang Zhu & Ying Li & Tingting Ma & Yiran Li & Meng Qin & Wei Wang & Yi Cao & Bin Xue, 2024. "Bioinspired adaptive lipid-integrated bilayer coating for enhancing dynamic water retention in hydrogel-based flexible sensors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Pang Zhu & Qingchuan Song & Sagar Bhagwat & Fadoua Mayoussi & Andreas Goralczyk & Niloofar Nekoonam & Mario Sanjaya & Peilong Hou & Silvio Tisato & Frederik Kotz-Helmer & Dorothea Helmer & Bastian E. , 2024. "Generation of precision microstructures based on reconfigurable photoresponsive hydrogels for high-resolution polymer replication and microoptics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Yi Wang & Yuanhang Xu & Weijie Zhai & Zhinan Zhang & Yuhong Liu & Shujie Cheng & Hongyu Zhang, 2022. "In-situ growth of robust superlubricated nano-skin on electrospun nanofibers for post-operative adhesion prevention," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Feng Wu & Yusheng Ren & Wenyan Lv & Xiaobing Liu & Xinyue Wang & Chuhan Wang & Zhenping Cao & Jinyao Liu & Jie Wei & Yan Pang, 2024. "Generating dual structurally and functionally skin-mimicking hydrogels by crosslinking cell-membrane compartments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Dan Xu & Xintong Meng & Siyuan Liu & Jade Poisson & Philipp Vana & Kai Zhang, 2024. "Dehydration regulates structural reorganization of dynamic hydrogels," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33081-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.