Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-020-16954-7
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jaeyong Lee & Calem Kenward & Liam J. Worrall & Marija Vuckovic & Francesco Gentile & Anh-Tien Ton & Myles Ng & Artem Cherkasov & Natalie C. J. Strynadka & Mark Paetzel, 2022. "X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Mikhail A. Hameedi & Erica T. Prates & Michael R. Garvin & Irimpan I. Mathews & B. Kirtley Amos & Omar Demerdash & Mark Bechthold & Mamta Iyer & Simin Rahighi & Daniel W. Kneller & Andrey Kovalevsky &, 2022. "Structural and functional characterization of NEMO cleavage by SARS-CoV-2 3CLpro," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Daniel W. Kneller & Hui Li & Gwyndalyn Phillips & Kevin L. Weiss & Qiu Zhang & Mark A. Arnould & Colleen B. Jonsson & Surekha Surendranathan & Jyothi Parvathareddy & Matthew P. Blakeley & Leighton Coa, 2022. "Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Gabriela Dias Noske & Yun Song & Rafaela Sachetto Fernandes & Rod Chalk & Haitem Elmassoudi & Lizbé Koekemoer & C. David Owen & Tarick J. El-Baba & Carol V. Robinson & Glaucius Oliva & Andre Schutzer , 2023. "An in-solution snapshot of SARS-COV-2 main protease maturation process and inhibition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Ala M. Shaqra & Sarah N. Zvornicanin & Qiu Yu J. Huang & Gordon J. Lockbaum & Mark Knapp & Laura Tandeske & David T. Bakan & Julia Flynn & Daniel N. A. Bolon & Stephanie Moquin & Dustin Dovala & Nese , 2022. "Defining the substrate envelope of SARS-CoV-2 main protease to predict and avoid drug resistance," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16954-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.